Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Comparison of Transfer Learning Behaviour in Violence Detection with Different Public Datasets

  • Conference paper
  • First Online:

Abstract

The detection and recognition of violence have been area of interest to research, mainly in surveillance, Human-Computer Interaction and information retrieval for video based on content. The primary purpose of detecting and recognizing violence is to automatically and in real-time recognize violence. Hence, it is a crucial area and object of several studies, as it will enable systems to have the necessary means to contain violence automatically. In this sense, pre-trained models are used to solve general problems of recognition of violent activity. These models were pre-trained with datasets from: hockey fight; movies; violence in real surveillance; and fighting in real situations. From this pre-training models, general patterns are extracted that are very important to detect violent behaviour in videos. Our approach uses a state-of-the-art pre-trained violence detection model in general activity recognition tasks and then tweaks it for violence detection inside a car. For this, we created our dataset with videos inside the car to apply in this study.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Soliman, M.M., Kamal, M.H., Nashed, M.A.E.M., Mostafa, Y.M., Chawky, B.S., Khattab, D.: Violence recognition from videos using deep learning techniques. In: 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 80–85. IEEE, December 2019

    Google Scholar 

  2. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput.28(6), 976–990 (2010)

    Article  Google Scholar 

  3. Mabrouk, A.B., Zagrouba, E.: Abnormal behavior recognition for intelligent video surveillance systems: a review. Expert Syst. Appl.91, 480–491 (2018)

    Article  Google Scholar 

  4. Lopez-Fuentes, L., van de Weijer, J., González-Hidalgo, M., Skinnemoen, H., Bagdanov, A.D.: Review on computer vision techniques in emergency situations. Multimedia Tools Appl.77(13), 17069–17107 (2017).https://doi.org/10.1007/s11042-017-5276-7

    Article  Google Scholar 

  5. Wang, P., Li, W., Ogunbona, P., Wan, J., Escalera, S.: RGB-D-based human motion recognition with deep learning: a survey. Comput. Vis. Image Underst.171, 118–139 (2018)

    Article  Google Scholar 

  6. Gowsikhaa, D., Abirami, S., Baskaran, R.: Automated human behavior analysis from surveillance videos: a survey. Artif. Intell. Rev.42(4), 747–765 (2012).https://doi.org/10.1007/s10462-012-9341-3

    Article  Google Scholar 

  7. Afsar, P., Cortez, P., Santos, H.: Automatic visual detection of human behavior: a review from 2000 to 2014. Expert Syst. Appl.42(20), 6935–6956 (2015)

    Article  Google Scholar 

  8. Maheshwari, S., Heda, S.: A review on crowd behavior analysis methods for video surveillance. In: Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, pp. 1–5, March 2016

    Google Scholar 

  9. Dubuisson, S., Gonzales, C.: A survey of datasets for visual tracking. Mach. Vis. Appl.27(1), 23–52 (2015).https://doi.org/10.1007/s00138-015-0713-y

    Article  Google Scholar 

  10. Zhang, J., Li, W., Ogunbona, P.O., Wang, P., Tang, C.: RGB-D-based action recognition datasets: a survey. Pattern Recogn.60, 86–105 (2016)

    Article  Google Scholar 

  11. Singh, T., Vishwakarma, D.K.: Video benchmarks of human action datasets: a review. Artif. Intell. Rev.52(2), 1107–1154 (2018).https://doi.org/10.1007/s10462-018-9651-1

    Article  Google Scholar 

  12. Komagal, E., Yogameena, B.: Foreground segmentation with PTZ camera: a survey. Multimedia Tools Appl.77(17), 22489–22542 (2018)

    Article  Google Scholar 

  13. Zhou, P., Ding, Q., Luo, H., Hou, X.: Violence detection in surveillance video using low-level features. PLoS One13(10) (2018)

    Google Scholar 

  14. Deniz, O., Serrano, I., Bueno, G., Kim, T.K.: Fast violence detection in video. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 2, pp. 478–485. IEEE, January 2014

    Google Scholar 

  15. De Souza, F.D., Chavez, G.C., do Valle Jr, E.A., Araújo, A.D.A.: Violence detection in video using spatio-temporal features. In: 2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images, pp. 224–230. IEEE, August 2010

    Google Scholar 

  16. Gao, Y., Liu, H., Sun, X., Wang, C., Liu, Y.: Violence detection using oriented violent flows. Image Vis. Comput.48, 37–41 (2016)

    Article  Google Scholar 

  17. Hassner, T., Itcher, Y., Kliper-Gross, O.: Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6. IEEE, June 2012

    Google Scholar 

  18. Jalal, A., Mahmood, M., Hasan, A.S.: Multi-features descriptors for human activity tracking and recognition in Indoor-outdoor environments. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 371–376. IEEE, January 2019

    Google Scholar 

  19. Mahmood, S., Khan, Y.D., Khalid Mahmood, M.: A treatise to vision enhancement and color fusion techniques in night vision devices. Multimedia Tools Appl.77(2), 2689–2737 (2017).https://doi.org/10.1007/s11042-017-4365-y

    Article  Google Scholar 

  20. Marcondes, F.S., Durães, D., Gonçalves, F., Fonseca, J., Machado, J., Novais, P.: In-vehicle violence detection in carpooling: a brief survey towards a general surveillance system. In: International Symposium on Distributed Computing and Artificial Intelligence, pp. 211–220. Springer, Cham, June 2020

    Google Scholar 

  21. Cheng, M., Cai, K., Li, M. RWF-2000: an open large scale video database for violence detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4183–4190). IEEE, January 2021

    Google Scholar 

  22. Mabrouk, A.B., Zagrouba, E.: Spatio-temporal feature using optical flow based distribution for violence detection. Pattern Recogn. Lett.92, 62–67 (2017)

    Article  Google Scholar 

  23. Senst, T., Eiselein, V., Kuhn, A., Sikora, T.: Crowd violence detection using global motion-compensated Lagrangian features and scale-sensitive video-level representation. IEEE Trans. Inf. Forensics Secur.12(12), 2945–2956 (2017)

    Article  Google Scholar 

  24. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, vol. 1, No. 2, MIT press, Cambridge

    Google Scholar 

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  26. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  27. Hochreiter, S., Bengio, Y., Fransconi, P., Schmidhuber, J.: Gradient flow in recorrent nets: the difficulty of learning long-terms dependencies (2001)

    Google Scholar 

  28. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  29. Carreira, J., Andrew, Z.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  30. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  31. Feichtenhofer, C.: X3d: Expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)

    Google Scholar 

  32. Gracia, I.S., Suarez, O.D., Garcia, G.B., Kim, T.K.: Fast fight detection. PLoS One10(4), e0120448 (2015)

    Google Scholar 

  33. Serrano Gracia, I., Deniz Suarez, O., Bueno Garcia, G., Kim, T.-K.: Fast fight detection. PLoS ONE10(4), e0120448 (2015).https://doi.org/10.1371/journal.pone.0120448

    Article  Google Scholar 

  34. Durães, D., Marcondes, F. S., Gonçalves, F., Fonseca, J., Machado, J., & Novais, P. (2020, June). Detection Violent Behaviors: A Survey. In International Symposium on Ambient Intelligence (pp. 106–116). Springer, Cham.

    Google Scholar 

  35. Costa, A., Castillo, J.C., Novais, P., Fernández-Caballero, A., Simoes, R.: Sensor-driven agenda for intelligent home care of the elderly. Expert Syst. Appl.39(15), 12192–12204 (2012).https://doi.org/10.1016/j.eswa.2012.04.058

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 039334; Funding Reference: POCI-01–0247-FEDER-039334].

Author information

Authors and Affiliations

  1. Centre Algoritmi, University of Minho, 4710-057, Braga, Portugal

    Dalila Durães, Flávio Santos, Francisco S. Marcondes & José Machado

  2. Bosch Car Multimedia, 4705-820, Braga, Portugal

    Sascha Lange

Authors
  1. Dalila Durães

    You can also search for this author inPubMed Google Scholar

  2. Flávio Santos

    You can also search for this author inPubMed Google Scholar

  3. Francisco S. Marcondes

    You can also search for this author inPubMed Google Scholar

  4. Sascha Lange

    You can also search for this author inPubMed Google Scholar

  5. José Machado

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDalila Durães.

Editor information

Editors and Affiliations

  1. ISEP/GECAD, Polytechnic Institute of Porto, Porto, Portugal

    Goreti Marreiros

  2. IST/INESC-ID, University of Lisbon, Porto Salvo, Portugal

    Francisco S. Melo

  3. DETI/IEETA, University of Aveiro, Aveiro, Portugal

    Nuno Lau

  4. FEUP/LIACC, University of Porto, Porto, Portugal

    Henrique Lopes Cardoso

  5. FEUP/LIACC, University of Porto, Porto, Portugal

    Luís Paulo Reis

Rights and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durães, D., Santos, F., Marcondes, F.S., Lange, S., Machado, J. (2021). Comparison of Transfer Learning Behaviour in Violence Detection with Different Public Datasets. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_23

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp