Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Considerations in Representation Selection for Problem Solving: A Review

  • Conference paper
  • First Online:

Abstract

Choosing how to represent knowledge effectively is a long-standing open problem. Cognitive science has shed light on the taxonomisation of representational systems from the perspective of cognitive processes, but a similar analysis is absent from the perspective ofproblem solving, where the representations are employed. In this paper we review how representation choices are made for solving problems in the context of theorem proving from three perspectives: cognition, heterogeneity, and computational demands. We contrast the different factors that are most important for each perspective in the context of problem solving to produce a list of considerations for developers of problem solving tools regarding representations that are appropriate for particular users and effective for specific problem domains.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    Famously, seven plus or minus twochunks [22].

  2. 2.

    By analogy to computers, we devote ‘registers’ that would otherwise be used on the problem to maintaining the ‘call stack’, but the human brain’s ‘call stack’ capacity is small, and – due to the nature of graph search – easy to overflow.

  3. 3.

    Although work that builds upon these dimensions (e.g., [4]) often includes concepts very close to those we are about to discuss.

  4. 4.

    In this case, the hierarchy is that the box is restricted to tacks, and there is no hierarchical relationship to the candle; thenecessary hierarchy has box restricted toobjects, which includes tacks and candles.

  5. 5.

    We consider onlyvisual representations; representations that are audial or tactile, for example, are beyond the scope of this review.

  6. 6.

    [32] identified variations on this divide, but all are sufficiently similar for our discussion.

  7. 7.

    Note again that, visually,a is to theleft ofb.

  8. 8.

    HOL stands for higher-order logic, an extension of predicate/first-order logic. LCF stands for the logic for computable functions, a theorem prover based on the logicof computable functions.

  9. 9.

    Isabelle (without ‘HOL’) is ameta-logic system: a developer tailors Isabelle to work in their particular system. For example, Isabelle/ZF allows people to use Zermelo-Fraenkel (ZF) set theory rather than higher-order logic. This is an interesting step towards heterogeneity, but the different logics are inaccessible to each other.

  10. 10.

    For example,\((x = \square ) \rightarrow (\text {shape}(x) = \texttt {square})\) places the square in the statement.

References

  1. Ainsworth, S.: The educational value of multiple-representations when learning complex scientific concepts. In: Gilbert, J.K., Reiner, M., Nakhleh, M. (eds.) Visualization: Theory and Practice in Science Education, pp. 191–208. Springer, Dordrecht (2008).https://doi.org/10.1007/978-1-4020-5267-5_9

    Chapter  Google Scholar 

  2. Barker-Plummer, D., Etchemendy, J., Liu, A., Murray, M., Swoboda, N.: Openproof - a flexible framework for heterogeneous reasoning. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 347–349. Springer, Heidelberg (2008).https://doi.org/10.1007/978-3-540-87730-1_32

    Chapter  Google Scholar 

  3. Barwise, J., Etchemendy, J.: Visual information and valid reasoning. In: Allwein, G., Barwise, J. (eds.) Logical Reasoning with Diagrams, pp. 3–25. Oxford University Press Inc, New York (1996)

    Google Scholar 

  4. Blackwell, A.F., Whitley, K.N., Good, J., Petre, M.: Cognitive factors in programming with diagrams. Artif. Intell. Rev.15(1), 95–114 (2001)

    Article  Google Scholar 

  5. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formaliz. Reason.9, 101–148 (2016)

    MathSciNet MATH  Google Scholar 

  6. Cheng, P.C.H.: Electrifying diagrams for learning: principles for complex representational systems. Cogn. Sci.26(6), 685–736 (2002)

    Article  Google Scholar 

  7. Cheng, P.C.-H.: What constitutes an effective representation? In: Jamnik, M., Uesaka, Y., Elzer Schwartz, S. (eds.) Diagrams 2016. LNCS (LNAI), vol. 9781, pp. 17–31. Springer, Cham (2016).https://doi.org/10.1007/978-3-319-42333-3_2

    Chapter  Google Scholar 

  8. Condell, J., et al.: Problem solving techniques in cognitive science. Artif. Intell. Rev.34(3), 221–234 (2010)

    Article  Google Scholar 

  9. Constable, R.L., et al.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall Inc, Hoboken (1986)

    Google Scholar 

  10. Giardino, V.: Towards a diagrammatic classification. Knowl. Eng. Rev.28(3), 237–248 (2013)

    Article MathSciNet  Google Scholar 

  11. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979).https://doi.org/10.1007/3-540-09724-4

    Book MATH  Google Scholar 

  12. Grawemeyer, B.: Evaluation of ERST – an external representation selection tutor. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS (LNAI), vol. 4045, pp. 154–167. Springer, Heidelberg (2006).https://doi.org/10.1007/11783183_21

    Chapter  Google Scholar 

  13. Green, T., Blackwell, A.: Cognitive dimensions of information artefacts: a tutorial. In: BCS HCI Conference, vol. 98 (1998)

    Google Scholar 

  14. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009).https://doi.org/10.1007/978-3-642-03359-9_4

    Chapter  Google Scholar 

  15. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant: a tutorial. The Coq Project (2004)

    Google Scholar 

  16. Inglis, M., Mejía-Ramos, J.P.: On the persuasiveness of visual arguments in mathematics. Found. Sci.14(1), 97–110 (2009)

    Article MathSciNet  Google Scholar 

  17. Jamnik, M., Bundy, A., Green, I.: On automating diagrammatic proofs of arithmetic arguments. J. Logic Lang. Inform.8(3), 297–321 (1999)

    Article MathSciNet  Google Scholar 

  18. Johnson-Laird, P.N.: Models and heterogeneous reasoning. J. Exp. Theor. Artif. Intell.18(2), 121–148 (2006)

    Article  Google Scholar 

  19. Kotovsky, K., Hayes, J., Simon, H.: Why are some problems hard? Evidence from tower of Hanoi. Cogn. Psychol.17(2), 248–294 (1985)

    Article  Google Scholar 

  20. Larkin, J.H., McDermott, J., Simon, D.P., Simon, H.A.: Models of competence in solving physics problems. Cogn. Sci.4(4), 317–345 (1980)

    Article  Google Scholar 

  21. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci.11(1), 65–100 (1987)

    Article  Google Scholar 

  22. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev.63(2), 81–97 (1956)

    Article  Google Scholar 

  23. Minsky, Y.: Effective ML revisited (2011). Blog Post.https://blog.janestreet.com/effective-ml-revisited/. Accessed 28 Nov 2020

  24. Moody, D.: The “physics’’ of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng.35(6), 756–779 (2009)

    Article  Google Scholar 

  25. Newell, A., Shaw, J., Simon, H.A.: Report on a general problem-solving program. In: Proceedings of the International Conference on Information Processing, pp. 256–264 (1959)

    Google Scholar 

  26. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reason.5(3), 363–397 (1989)

    Article MathSciNet  Google Scholar 

  27. Paulson, L.C., Blanchette, C.: Three years of experience with sledgehammer, a practical link between automatic and interactive theorem provers (2010)

    Google Scholar 

  28. Pólya, G.: How to Solve It: A New Aspect of Mathematical Method. Princeton Science Library, Princeton University Press (1957)

    Google Scholar 

  29. Raggi, D., Bundy, A., Grov, G., Pease, A.: Automating change of representation for proofs in discrete mathematics (extended version). Math. Comput. Sci.10(4), 429–457 (2016)

    Article MathSciNet  Google Scholar 

  30. Scaife, M., Rogers, Y.: External cognition: how do graphical representations work? Int. J. Hum. Comput. Stud.45(2), 185–213 (1996)

    Article  Google Scholar 

  31. Shimojima, A.: Operational constraints in diagrammatic reasoning. In: Allwein, G., Barwise, J. (eds.) Logical Reasoning with Diagrams, chap. 2, pp. 27–48. Oxford University Press, New York (1996)

    Google Scholar 

  32. Shimojima, A.: The graphic-linguistic distinction. In: Blackwell, A.F. (ed.) Thinking with Diagrams, pp. 5–27. Springer, Dordrecht (2001).https://doi.org/10.1007/978-94-017-3524-7_2

    Chapter  Google Scholar 

  33. Simon, H.A., Newell, A.: Human problem solving: the state of the theory in 1970. Am. Psychol.26(2), 145–159 (1971)

    Article  Google Scholar 

  34. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008).https://doi.org/10.1007/978-3-540-71067-7_6

    Chapter  Google Scholar 

  35. Stapleton, G., Jamnik, M., Shimojima, A.: What makes an effective representation of information: a formal account of observational advantages. J. Logic Lang. Inform.26(2), 143–177 (2017)

    Article MathSciNet  Google Scholar 

  36. Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Automated theorem proving in Euler diagram systems. J. Autom. Reason.39(4), 431–470 (2007)

    Article MathSciNet  Google Scholar 

  37. Stenning, K., Lemon, O.: Aligning logical and psychological perspectives on diagrammatic reasoning. Artif. Intell. Rev.15(1), 29–62 (2001)

    Article  Google Scholar 

  38. Stenning, K., Oberlander, J.: A cognitive theory of graphical and linguistic reasoning: logic and implementation. Cogn. Sci.19(1), 97–140 (1995)

    Article  Google Scholar 

  39. Superfine, A.C., Canty, R.S., Marshall, A.M.: Translation between external representation systems in mathematics: all-or-none or skill conglomerate? J. Math. Behav.28(4), 217–236 (2009)

    Article  Google Scholar 

  40. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci.12(2), 257–285 (1988)

    Article  Google Scholar 

  41. Tversky, B.: Visualizing thought. topiCS3(3), 499–535 (2011)

    Google Scholar 

  42. Urbas, M., Jamnik, M.: A framework for heterogeneous reasoning in formal and informal domains. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 277–292. Springer, Heidelberg (2014).https://doi.org/10.1007/978-3-662-44043-8_28

    Chapter  Google Scholar 

  43. Urbas, M., Jamnik, M., Stapleton, G., Flower, J.: Speedith: a diagrammatic reasoner for spider diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 163–177. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-31223-6_19

    Chapter  Google Scholar 

  44. Vessey, I.: Cognitive fit: a theory-based analysis of the graphs versus tables literature. Decis. Sci.22(2), 219–240 (1991)

    Article  Google Scholar 

  45. Weisberg, R., Suls, J.M.: An information-processing model of Duncker’s candle problem. Cogn. Psychol.4(2), 255–276 (1973)

    Article  Google Scholar 

  46. Zazkis, D., Weber, K., Mejía-Ramos, J.P.: Bridging the gap between graphical arguments and verbal-symbolic proofs in a real analysis context. Educ. Stud. Math.93(2), 155–173 (2016).https://doi.org/10.1007/s10649-016-9698-3

    Article  Google Scholar 

  47. Zhang, J.: The nature of external representations in problem solving. Cogn. Sci.21(2), 179–217 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

Aaron Stockdill is supported by the Hamilton Cambridge International Scholarship. This work was supported by the EPSRC grants EP/R030650/1, EP/T019603/1, EP/R030642/1, and EP/T019034/1.

Author information

Authors and Affiliations

  1. University of Cambridge, Cambridge, UK

    Aaron Stockdill, Daniel Raggi & Mateja Jamnik

  2. University of Sussex, Brighton, UK

    Grecia Garcia Garcia & Peter C.-H. Cheng

Authors
  1. Aaron Stockdill

    You can also search for this author inPubMed Google Scholar

  2. Daniel Raggi

    You can also search for this author inPubMed Google Scholar

  3. Mateja Jamnik

    You can also search for this author inPubMed Google Scholar

  4. Grecia Garcia Garcia

    You can also search for this author inPubMed Google Scholar

  5. Peter C.-H. Cheng

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAaron Stockdill.

Editor information

Editors and Affiliations

  1. Jadavpur University, Kolkata, India

    Amrita Basu

  2. University of Cambridge, Cambridge, UK

    Gem Stapleton

  3. Lancaster University in Leipzig, Leipzig, Germany

    Sven Linker

  4. Deakin University, Burwood, VIC, Australia

    Catherine Legg

  5. Kyoto University, Kyoto, Japan

    Emmanuel Manalo

  6. Universidade Federal Fluminense, Niterói, Brazil

    Petrucio Viana

Rights and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stockdill, A., Raggi, D., Jamnik, M., Garcia Garcia, G., Cheng, P.CH. (2021). Considerations in Representation Selection for Problem Solving: A Review. In: Basu, A., Stapleton, G., Linker, S., Legg, C., Manalo, E., Viana, P. (eds) Diagrammatic Representation and Inference. Diagrams 2021. Lecture Notes in Computer Science(), vol 12909. Springer, Cham. https://doi.org/10.1007/978-3-030-86062-2_4

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp