Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 12804))
Included in the following conference series:
911Accesses
Abstract
ForkAE is a NIST lightweight cryptography candidate that uses the forkcipher primitive in two modes of operation – SAEF and PAEF – optimized for authenticated encryption of the shortest messages. SAEF is a sequential andonline AEAD that minimizes the memory footprint compared to its alternative parallel mode PAEF, catering to the most constrained devices. SAEF was proven AE secure against nonce-respecting adversaries.
Due to their more acute and direct exposure to device misuse and mishandling, in most use cases of lightweight cryptography, nonce reuse presents a very realistic attack vector. Furthermore, many lightweight applications mandate security for their online AEAD schemes against block-wise adversaries. Surprisingly, a very few NIST lightweight AEAD candidates come with provable guarantees against these security threats.
In this work we investigate the provable security guarantees of SAEF when nonces are repeated under a refined version of the notion of online authenticated encryption OAE given by Fleischmann et al. in 2012. Using the coefficient H technique we show that, with no modifications, SAEF is OAE secure up to the birthday security bound, i.e., up to\(2^{n/2}\) processed blocks of data, wheren is the block size of the forkcipher. The implications of our work is that SAEF is safe to use in a block-wise fashion, and that if nonces get repeated, this has no impact on ciphertext integrity and confidentiality only degrades by a limited extent up to repetitions of common message prefixes.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\( \text {OPerm}(n) \) is a countably infinite set, so the notion of a uniform online permutation is not defined.
- 2.
We acknowledge that the performance gain of ForkSKINNY comes with a more ambitious security goal for the construction. However the investigation of this trade-off is out of scope of this work.
References
Andreeva, E., et al.: COLM v1 (2014).https://competitions.cr.yp.to/round3/colmv1.pdf
Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.: Forkcipher: a new primitive for authenticated encryption of very short messages. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 153–182. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-34621-8_6
Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-63697-9_1
Beierle, C., et al.: TheSKINNY family of block ciphers and its low-latency variantMANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016).https://doi.org/10.1007/978-3-662-53008-5_5
Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: Online ciphers and the hash-CBC construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 292–309. Springer, Heidelberg (2001).https://doi.org/10.1007/3-540-44647-8_18
Bellizia, D., et al.: Spook: sponge-based leakage-resistant authenticated encryption with a masked tweakable block cipher. IACR Tran. Symmetric Cryptol.2020(S1), 295–349 (2020).https://doi.org/10.13154/tosc.v2020.iS1.295-349.https://tosc.iacr.org/index.php/ToSC/article/view/8623
Bernstein, D.J.: Cryptographic competitions: CAESAR.http://competitions.cr.yp.to
Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-disrespecting adversaries: practical forgery attacks on GCM in TLS. In: 10th USENIX Workshop on Offensive Technologies (2016)
Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: ASCON v1.2 (2014).https://competitions.cr.yp.to/round3/asconv12.pdf
Dworkin, M.J.: SP 800-38D. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC (2007)
Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 196–215. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-34047-5_12
Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated on-line encryption. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 145–159. Springer, Heidelberg (2004).https://doi.org/10.1007/978-3-540-24654-1_11
Guillaume Endignoux, D.V.: Linking Online Misuse-Resistant Authenticated Encryption and Blockwise Attack Models. Cryptology ePrint Archive, Report 2017/184 (2017).https://eprint.iacr.org/2017/184
Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015).https://doi.org/10.1007/978-3-662-46800-5_2
Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 493–517. Springer, Heidelberg (2015).https://doi.org/10.1007/978-3-662-47989-6_24
Hongjun, W., Tao, H.: TinyJAMBU: A Family of Lightweight Authenticated Encryption Algorithms (2019).https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf
Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the titans: the romulus and remus families of lightweight AEAD algorithms. IACR Trans. Symmetric Cryptol.2020(1), 43–120 (2020).https://doi.org/10.13154/tosc.v2020.i1.43-120.https://tosc.iacr.org/index.php/ToSC/article/view/8560
Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41 v1 (2016).https://competitions.cr.yp.to/round3/deoxysv141.pdf
Krovetz, T., Rogaway, P.: OCB v1.1 (2014).https://competitions.cr.yp.to/round3/ocbv11.pdf
O’Donnell, L.: 2 Million IoT Devices Vulnerable to Complete Takeover. Threatpost (2019).https://threatpost.com/iot-devices-vulnerable-takeover/144167/
O’Donnell, L.: Serious Security Flaws Found in Children’s Connected Toys. Threatpost (2019).https://threatpost.com/serious-security-flaws-found-in-childrens-connected-toys/151020/
Patarin, J.: The “Coefficients H’’ technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).https://doi.org/10.1007/978-3-642-04159-4_21
Purnal, A., Andreeva, E., Roy, A., Vizár, D.: What the fork: implementation aspects of a forkcipher. In: NIST Lightweight Cryptography Workshop 2019 (2019)
Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 98–107 (2002)
Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006).https://doi.org/10.1007/11761679_23
Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption: a provable-security treatment of the key-wrap problem. IACR Cryptology ePrint Archive 2006, 221 (2006)
Vanhoef, M., Piessens, F.: Key reinstallation attacks: forcing nonce reuse in WPA2. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1313–1328. ACM (2017)
Wu, H.: ACORN v3 (2014).https://competitions.cr.yp.to/round3/acornv3.pdf
Wu, H., Huang, T.: MORUS v2 (2014).https://competitions.cr.yp.to/round3/morusv2.pdf
Wu, H., Preneel, B.: AEGIS v1.1 (2014).https://competitions.cr.yp.to/round3/aegisv11.pdf
Author information
Authors and Affiliations
TU Wien, Vienna, Austria
Elena Andreeva
imec-COSIC, KU Leuven, Leuven, Belgium
Amit Singh Bhati
CSEM, Neuchâtel, Switzerland
Damian Vizár
- Elena Andreeva
You can also search for this author inPubMed Google Scholar
- Amit Singh Bhati
You can also search for this author inPubMed Google Scholar
- Damian Vizár
You can also search for this author inPubMed Google Scholar
Corresponding authors
Correspondence toElena Andreeva,Amit Singh Bhati orDamian Vizár.
Editor information
Editors and Affiliations
University of Haifa, Haifa, Israel
Orr Dunkelman
University of Calgary, Calgary, AB, Canada
Michael J. Jacobson, Jr.
Dalhousie University, Halifax, NS, Canada
Colin O'Flynn
A Appendix: Proof of Proposition 1
A Appendix: Proof of Proposition1
We prove the proposition by describing the transformation in the backward direction, i.e. reconstructing SAEF input and output arguments from a block-tuple represented query. This is possible thanks to the sequence of tweak strings\(\textsf {T}^i_1, \ldots , \textsf {T}^i_{\ell ^i}\), which allows to unambiguously determine the boundary between the AD and message blocks, as well as whether the final block of AD and message respectively weren-bit long or not. Given a block-tuple represented query\(((\textsf {T}_j, \varDelta _j, X_j, Y_j)_{j=1}^{\ell }, T)\), we can reconstructN, A, M, C as follows (where\( {\mathsf {unpad10}} (X)\) removes\(10^*\) from the end of stringX) by iterating over the block tuples with current tuple denoted as\((\textsf {T},\varDelta , X, Y)\):
- 1.
Parse\(\textsf {T}\) as\(N\Vert 1\Vert F\). If\(F \in \{110, 111, 100, 101\}\) then necessarily\(\ell = 1\), and if
\(F = 110\): Set\(A=X, M=\varepsilon \) and\(C=T\) and stop.
\(F = 111\): Set\(A= {\mathsf {unpad10}} (X), M=\varepsilon \) and\(C=T\) and stop.
\(F = 100\): Set\(A=\varepsilon , M=X\) and\(C=Y\Vert T\) and stop.
\(F = 101\): Set\(A=\varepsilon , M= {\mathsf {unpad10}} (X)\) and\(C=Y\Vert T\) and stop.
If\(F \in \{010, 011\}\) then set\(A=X_1\) respectively\(A= {\mathsf {unpad10}} (X_1)\) and\(M=C=\varepsilon \) (no more AD blocks are expected). If\(F=001\) set\(A=\varepsilon \),\(M=X_1\) and\(C=Y_1\) (no more AD blocks are expected). Finally, if\(F=000\) set\(A=X_1\) and\(M=C=\varepsilon \) (more AD blocks are expected). Set\(F_{last} \leftarrow F\) and go to next tuple.
- 2.
Parse\(\textsf {T}\) as\(S\Vert F\). If\(S \ne 0^{n-3}\) abort. If\(F \ne 000\) go to next step. If\(F_{last} \ne 000\) abort. Set\(A = A\Vert X\) and\(F_{last} = 000\). Go to next tuple and repeat this step.
- 3.
Parse\(\textsf {T}\) as\(S\Vert F\). If\(S \ne 0^{n-3}\) abort. If\(F \notin \{ 010, 011, 110, 111 \}\) go to next step. If\(F_{last} \ne 000\) abort. If
\(F = 110\): Set\(A=A\Vert X, M=\varepsilon \) and\(C=T\) and stop.
\(F = 111\): Set\(A=A\Vert {\mathsf {unpad10}} (X), M=\varepsilon \) and\(C=T\) and stop.
\(F = 010\): Set\(A=A\Vert X\).
\(F = 011\): Set\(A\Vert {\mathsf {unpad10}} (X)\) and stop.
Set\(F_{last} = F\). Go to next tuple.
- 4.
Parse\(\textsf {T}\) as\(S\Vert F\). If\(S \ne 0^{n-3}\) abort. If\(F \ne 001\) go to next step. If\(F_{last} \notin \{ 010, 011, 110, 111 \}\) abort. Set\(M = M\Vert X\),\(C=C\Vert Y\) and\(F_{last} = 001\). Go to next tuple and repeat this step.
- 5.
Parse\(\textsf {T}\) as\(S\Vert F\). If\(S \ne 0^{n-3}\) abort. If\(F \notin \{ 100, 101 \}\) or if\(F_{last} \notin \{ 010, 011, 001 \}\) abort. If
\(F = 100\): Set\(M=M\Vert X\).
\(F = 101\): Set\(M=M\Vert {\mathsf {unpad10}} (X)\).
Set\(C=C\Vert Y\Vert T\) and stop.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Andreeva, E., Bhati, A.S., Vizár, D. (2021). Nonce-Misuse Security of the SAEF Authenticated Encryption Mode. In: Dunkelman, O., Jacobson, Jr., M.J., O'Flynn, C. (eds) Selected Areas in Cryptography. SAC 2020. Lecture Notes in Computer Science(), vol 12804. Springer, Cham. https://doi.org/10.1007/978-3-030-81652-0_20
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-81651-3
Online ISBN:978-3-030-81652-0
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative