Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Comparative Study of Learning Outcomes for Online Learning Platforms

  • Conference paper
  • First Online:

Abstract

Personalization and active learning help educational systems to close the gap between students with varying abilities. We run a comparative head-to-head study of learning outcomes for two popular online platforms:Platform A, which delivers content over lecture videos and multiple-choice quizzes, andPlatform B, which provides interactive problem-solving exercises and personalized feedback. We observe a statistically significant increase in the learning outcomes onPlatform B. Further, the results of the self-assessment questionnaire suggest that participants usingPlatform B improve their metacognition.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    Platform B is the Korbit learning platform available atwww.korbit.ai.

References

  1. Adedoyin, O.B., Soykan, E.: Covid-19 pandemic and online learning: the challenges and opportunities. Interactive Learn. Environ.1–13 (2020)

    Google Scholar 

  2. Albacete, P., Jordan, P., Katz, S., Chounta, I.-A., McLaren, B.M.: The impact of student model updates on contingent scaffolding in a natural-language tutoring system. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625, pp. 37–47. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-23204-7_4

    Chapter  Google Scholar 

  3. Barokas, J., Ketterl, M., Brooks, C., Greer, J.: Lecture capture: student perceptions, expectations, and behaviors. In: Sanchez, J., Zhang, K. (eds.) World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Educatio, pp. 424–431 (2010)

    Google Scholar 

  4. Basilaia, G., Kvavadze, D.: Transition to online education in schools during a SARS-CoV-2 coronavirus (COVID-19) pandemic in Georgia. Pedagogical Res.5(4) (2020)

    Google Scholar 

  5. Brown, G.T.L., Harris, L.R.: Student self-assessment. In: McMillan, J.H. (ed.) The SAGE Handbook of Research on Classroom Assessment, pp. 367–393. Sage, Thousand Oaks (2013)

    Google Scholar 

  6. Brown, G.T., Andrade, H.L., Chen, F.: Accuracy in student self-assessment: directions and cautions for research. Assess. Educ.: Principles, Policy Practice22(4), 444–457 (2015)

    Article  Google Scholar 

  7. Büdenbender, J., Frischauf, A., Goguadze, G., Melis, E., Libbrecht, P., Ullrich, C.: Using computer algebra systems as cognitive tools. In: International Conference on Intelligent Tutoring Systems, pp. 802–810 (2002)

    Google Scholar 

  8. Chi, M., Koedinger, K., Gordon, G., Jordan, P., Vanlehn, K.: Instructional factors analysis: a cognitive model for multiple instructional interventions. In: EDM 2011 - Proceedings of the 4th International Conference on Educational Data Mining, pp. 61–70 (2011)

    Google Scholar 

  9. Coffield, F.J., Moseley, D.V., Hall, E., Ecclestone, K.: Learning Styles for Post 16 Learners: What Do We Know?. Learning and Skills Research Centre/University of Newcastle upon Tyne, London (2004)

    Google Scholar 

  10. Crowell, T.L.: Student self grading: perception vs. reality. Am. J. Educ. Res.3(4), 450–455 (2015).https://doi.org/10.12691/education-3-4-10

  11. Demmans Epp, C., Phirangee, K., Hewitt, J., Perfetti, C.A.: Learning management system and course influences on student actions and learning experiences. Educ. Tech. Research Dev.68(6), 3263–3297 (2020).https://doi.org/10.1007/s11423-020-09821-1

    Article  Google Scholar 

  12. Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L.: Data driven automatic feedback generation in the iList intelligent tutoring system. Technol. Instr. Cogn. Learn.10(1), 5–26 (2015)

    Google Scholar 

  13. Graesser, A., VanLehn, K., Rose, C., Jordan, P., Harter, D.: Intelligent tutoring systems with conversational dialogue. AI Mag.22(4), 39–51 (2001)

    Google Scholar 

  14. Honey, P., Mumford, A.: The Manual of Learning Styles. Peter Honey Publications, Maidenhead (1992)

    Google Scholar 

  15. Hrastinski, S., Stenbom, S., Benjaminsson, S., Jansson, M.: Identifying and exploring the effects of different types of tutor questions in individual online synchronous tutoring in mathematics. Interactive Learn. Environ.1–13 (2019)

    Google Scholar 

  16. Kashihara, A., Hasegawa, S.: A model of meta-learning for web-based navigational learning. Int. J. Adv. Technol. Learn.2(4), 198–206 (2005)

    Google Scholar 

  17. Koedinger, K., Corbett, A.: Cognitive tutors: technology bringing learning sciences to the classroom. In: Sawyer, R.K. (ed.) The Cambridge Handbook of the Learning Sciences, pp. 61–78. Cambridge University Press, New York (2006)

    Google Scholar 

  18. Kolb, D.A.: Experiential Learning Experience as the Source of Learning and Development. Prentice Hall, New Jersey (1984)

    Google Scholar 

  19. Kumar, A.N.: Results from the evaluation of the effectiveness of an online tutor on expression evaluation. ACM SIGCSE Bull.37(1), 216–220 (2005)

    Article  Google Scholar 

  20. Kumar, A.N.: Generation of problems, answers, grade, and feedback–case study of a fully automated tutor. J. Educ. Resourc. Comput. (JERIC)5(3), 3-es (2005)

    Google Scholar 

  21. Lin, C.F., Yeh, Y.C., Hung, Y.H., Chang, R.I.: Data mining for providing a personalized learning path in creativity: an application of decision trees. Comput. Educ.68, 199–210 (2013).https://doi.org/10.1016/j.compedu.2013.05.009

    Article  Google Scholar 

  22. Ma, W., Adesope, O.O., Nesbit, J.C., Liu, Q.: Intelligent tutoring systems and learning outcomes: a meta-analysis. J. Educ. Psychol. (2014)

    Google Scholar 

  23. Mark, M.A., Greer, J.E.: Evaluation methodologies for intelligent tutoring systems. J. Artif. Intell. Educ.4, 129–129 (1993)

    Google Scholar 

  24. Melis, E., Siekmann, J.: ActiveMath: an intelligent tutoring system for mathematics. Artif. Intell. Soft Comput.91–101 (2004)

    Google Scholar 

  25. Munshi, A., Biswas, G.: Personalization in OELEs: developing a data-driven framework to model and scaffold SRL processes. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11626, pp. 354–358. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-23207-8_65

    Chapter  Google Scholar 

  26. Narciss, S., et al.: Exploring feedback and student characteristics relevant for personalizing feedback strategies. Comput. Educ.71, 56–76 (2014)

    Article  Google Scholar 

  27. Nye, B.D., Graesser, A.C., Hu, X.: AutoTutor and family: a review of 17 years of natural language tutoring. Int. J. Artif. Intell. Educ.24(4), 427–469 (2014)

    Article  Google Scholar 

  28. Onyema, E.M., et al.: Impact of Coronavirus pandemic on education. J. Educ. Pract.11(13), 108–121 (2020)

    Google Scholar 

  29. Penstein, C.R., Moore, J., VanLehn, K., Allbritton, D.: A comparative evaluation of socratic versus didactic tutoring. Ann. Meeting Cogn. Sci. Soc.23 (2001)

    Google Scholar 

  30. Psotka, J., Massey, D., Mutter, S.: Intelligent Tutoring Systems: Lessons Learned. Lawrence Erlbaum Associates, Hillsdale (1988)

    Google Scholar 

  31. Rus, V., Stefanescu, D., Baggett, W., Niraula, N., Franceschetti, D., Graesser, A.C.: Macro-adaptation in conversational intelligent tutoring matters. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 242–247. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-07221-0_29

    Chapter  Google Scholar 

  32. Rus, V., Stefanescu, D., Niraula, N., Graesser, A.C.: DeepTutor: towards macro-and micro-adaptive conversational intelligent tutoring at scale. In: Proceedings of the first ACM Conference on Learning@ Scale Conference, pp. 209–210 (2014)

    Google Scholar 

  33. Sampson, D., Karagiannidis, C.: Personalised learning: educational, technological and standarisation perspective. Digit. Educ. Rev.4, 24–39 (2002)

    Google Scholar 

  34. Serban, I.V., et al.: A large-scale, open-domain, mixed-interface dialogue-based ITS for STEM. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 387–392. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-52240-7_70

    Chapter  Google Scholar 

  35. Kochmar, E., Vu, D.D., Belfer, R., Gupta, V., Serban, I.V., Pineau, J.: Automated personalized feedback improves learning gains in an intelligent tutoring system. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 140–146. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-52240-7_26

    Chapter  Google Scholar 

  36. Grenander, M., Belfer, R., Kochmar, E., Serban, I.V., St-Hilaire, F., Cheung, J.C.: Deep discourse analysis for generating personalized feedback in intelligent tutor systems. In: The 11th Symposium on Educational Advances in Artificial Intelligence (2021)

    Google Scholar 

  37. Stash, N.V., Cristea, A.I., De Bra, P.M.: Authoring of learning styles in adaptive hypermedia: problems and solutions. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters, pp. 114–123 (2004)

    Google Scholar 

  38. Tan, Y., Quintana, R.M.: What can we learn about learner interaction when one course is hosted on two MOOC platforms? In: Companion Proceedings to the International Conference on Learning Analytics and Knowledge (LAK), pp. 155–156 (2019)

    Google Scholar 

  39. Tomkins, S., Ramesh, A., Getoor, L.: Predicting Post-Test Performance from Online Student Behavior: A High School MOOC Case Study. International Educational Data Mining Society (2016)

    Google Scholar 

  40. VanLehn, K., Graesser, A.C., Jackson, G., Jordan, P., Olney, A., Rose, C.P.: When are tutorial dialogues more effective than reading? Cogn. Sci.31(1), 3–62 (2007)

    Article  Google Scholar 

  41. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. (2011)

    Google Scholar 

  42. Wang, Y., Paquette, L., Baker, R.: A longitudinal study on learner career advancement in MOOCs. J. Learn. Anal.1(3), 203–206 (2014)

    Article  Google Scholar 

  43. Wood, D., Wood, H.: Vygotsky, tutoring and learning. Oxf. Rev. Educ.22(1), 5–16 (1996)

    Article  Google Scholar 

  44. Woolf, B.: Building Intelligent Interactive Tutors. Morgan Kaufmann Publishers, Burlington (2009)

    Google Scholar 

  45. Yin, B., Patikorn, T., Botelho, A.F., Heffernan, N.T.: Observing personalizations in learning: identifying heterogeneous treatment effects using causal trees. In: Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, pp. 299–302 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Korbit Technologies Inc., Montreal, Canada

    Francois St-Hilaire, Nathan Burns, Robert Belfer, Muhammad Shayan, Ariella Smofsky, Dung Do Vu, Antoine Frau, Joseph Potochny, Farid Faraji, Vincent Pavero, Neroli Ko, Ansona Onyi Ching, Sabina Elkins, Anush Stepanyan, Adela Matajova, Laurent Charlin, Yoshua Bengio, Iulian Vlad Serban & Ekaterina Kochmar

  2. Quebec Artificial Intelligence Institute (Mila), Montreal, Canada

    Laurent Charlin & Yoshua Bengio

  3. University of Bath, Bath, UK

    Ekaterina Kochmar

Authors
  1. Francois St-Hilaire

    You can also search for this author inPubMed Google Scholar

  2. Nathan Burns

    You can also search for this author inPubMed Google Scholar

  3. Robert Belfer

    You can also search for this author inPubMed Google Scholar

  4. Muhammad Shayan

    You can also search for this author inPubMed Google Scholar

  5. Ariella Smofsky

    You can also search for this author inPubMed Google Scholar

  6. Dung Do Vu

    You can also search for this author inPubMed Google Scholar

  7. Antoine Frau

    You can also search for this author inPubMed Google Scholar

  8. Joseph Potochny

    You can also search for this author inPubMed Google Scholar

  9. Farid Faraji

    You can also search for this author inPubMed Google Scholar

  10. Vincent Pavero

    You can also search for this author inPubMed Google Scholar

  11. Neroli Ko

    You can also search for this author inPubMed Google Scholar

  12. Ansona Onyi Ching

    You can also search for this author inPubMed Google Scholar

  13. Sabina Elkins

    You can also search for this author inPubMed Google Scholar

  14. Anush Stepanyan

    You can also search for this author inPubMed Google Scholar

  15. Adela Matajova

    You can also search for this author inPubMed Google Scholar

  16. Laurent Charlin

    You can also search for this author inPubMed Google Scholar

  17. Yoshua Bengio

    You can also search for this author inPubMed Google Scholar

  18. Iulian Vlad Serban

    You can also search for this author inPubMed Google Scholar

  19. Ekaterina Kochmar

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toEkaterina Kochmar.

Editor information

Editors and Affiliations

  1. Technion – Israel Institute of Technology, Haifa, Israel

    Ido Roll

  2. Arizona State University, Tempe, AZ, USA

    Danielle McNamara

  3. Utrecht University, Utrecht, The Netherlands

    Sergey Sosnovsky

  4. London Knowledge Lab, London, UK

    Rose Luckin

  5. University of Leeds, Leeds, UK

    Vania Dimitrova

Rights and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

St-Hilaire, F.et al. (2021). A Comparative Study of Learning Outcomes for Online Learning Platforms. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12749. Springer, Cham. https://doi.org/10.1007/978-3-030-78270-2_59

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp