- Francois St-Hilaire13,
- Nathan Burns13,
- Robert Belfer13,
- Muhammad Shayan13,
- Ariella Smofsky13,
- Dung Do Vu13,
- Antoine Frau13,
- Joseph Potochny13,
- Farid Faraji13,
- Vincent Pavero13,
- Neroli Ko13,
- Ansona Onyi Ching13,
- Sabina Elkins13,
- Anush Stepanyan13,
- Adela Matajova13,
- Laurent Charlin13,14,
- Yoshua Bengio13,14,
- Iulian Vlad Serban13 &
- …
- Ekaterina Kochmar13,15
Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 12749))
Included in the following conference series:
4898Accesses
Abstract
Personalization and active learning help educational systems to close the gap between students with varying abilities. We run a comparative head-to-head study of learning outcomes for two popular online platforms:Platform A, which delivers content over lecture videos and multiple-choice quizzes, andPlatform B, which provides interactive problem-solving exercises and personalized feedback. We observe a statistically significant increase in the learning outcomes onPlatform B. Further, the results of the self-assessment questionnaire suggest that participants usingPlatform B improve their metacognition.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 9151
- Price includes VAT (Japan)
- Softcover Book
- JPY 11439
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Platform B is the Korbit learning platform available atwww.korbit.ai.
References
Adedoyin, O.B., Soykan, E.: Covid-19 pandemic and online learning: the challenges and opportunities. Interactive Learn. Environ.1–13 (2020)
Albacete, P., Jordan, P., Katz, S., Chounta, I.-A., McLaren, B.M.: The impact of student model updates on contingent scaffolding in a natural-language tutoring system. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625, pp. 37–47. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-23204-7_4
Barokas, J., Ketterl, M., Brooks, C., Greer, J.: Lecture capture: student perceptions, expectations, and behaviors. In: Sanchez, J., Zhang, K. (eds.) World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Educatio, pp. 424–431 (2010)
Basilaia, G., Kvavadze, D.: Transition to online education in schools during a SARS-CoV-2 coronavirus (COVID-19) pandemic in Georgia. Pedagogical Res.5(4) (2020)
Brown, G.T.L., Harris, L.R.: Student self-assessment. In: McMillan, J.H. (ed.) The SAGE Handbook of Research on Classroom Assessment, pp. 367–393. Sage, Thousand Oaks (2013)
Brown, G.T., Andrade, H.L., Chen, F.: Accuracy in student self-assessment: directions and cautions for research. Assess. Educ.: Principles, Policy Practice22(4), 444–457 (2015)
Büdenbender, J., Frischauf, A., Goguadze, G., Melis, E., Libbrecht, P., Ullrich, C.: Using computer algebra systems as cognitive tools. In: International Conference on Intelligent Tutoring Systems, pp. 802–810 (2002)
Chi, M., Koedinger, K., Gordon, G., Jordan, P., Vanlehn, K.: Instructional factors analysis: a cognitive model for multiple instructional interventions. In: EDM 2011 - Proceedings of the 4th International Conference on Educational Data Mining, pp. 61–70 (2011)
Coffield, F.J., Moseley, D.V., Hall, E., Ecclestone, K.: Learning Styles for Post 16 Learners: What Do We Know?. Learning and Skills Research Centre/University of Newcastle upon Tyne, London (2004)
Crowell, T.L.: Student self grading: perception vs. reality. Am. J. Educ. Res.3(4), 450–455 (2015).https://doi.org/10.12691/education-3-4-10
Demmans Epp, C., Phirangee, K., Hewitt, J., Perfetti, C.A.: Learning management system and course influences on student actions and learning experiences. Educ. Tech. Research Dev.68(6), 3263–3297 (2020).https://doi.org/10.1007/s11423-020-09821-1
Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L.: Data driven automatic feedback generation in the iList intelligent tutoring system. Technol. Instr. Cogn. Learn.10(1), 5–26 (2015)
Graesser, A., VanLehn, K., Rose, C., Jordan, P., Harter, D.: Intelligent tutoring systems with conversational dialogue. AI Mag.22(4), 39–51 (2001)
Honey, P., Mumford, A.: The Manual of Learning Styles. Peter Honey Publications, Maidenhead (1992)
Hrastinski, S., Stenbom, S., Benjaminsson, S., Jansson, M.: Identifying and exploring the effects of different types of tutor questions in individual online synchronous tutoring in mathematics. Interactive Learn. Environ.1–13 (2019)
Kashihara, A., Hasegawa, S.: A model of meta-learning for web-based navigational learning. Int. J. Adv. Technol. Learn.2(4), 198–206 (2005)
Koedinger, K., Corbett, A.: Cognitive tutors: technology bringing learning sciences to the classroom. In: Sawyer, R.K. (ed.) The Cambridge Handbook of the Learning Sciences, pp. 61–78. Cambridge University Press, New York (2006)
Kolb, D.A.: Experiential Learning Experience as the Source of Learning and Development. Prentice Hall, New Jersey (1984)
Kumar, A.N.: Results from the evaluation of the effectiveness of an online tutor on expression evaluation. ACM SIGCSE Bull.37(1), 216–220 (2005)
Kumar, A.N.: Generation of problems, answers, grade, and feedback–case study of a fully automated tutor. J. Educ. Resourc. Comput. (JERIC)5(3), 3-es (2005)
Lin, C.F., Yeh, Y.C., Hung, Y.H., Chang, R.I.: Data mining for providing a personalized learning path in creativity: an application of decision trees. Comput. Educ.68, 199–210 (2013).https://doi.org/10.1016/j.compedu.2013.05.009
Ma, W., Adesope, O.O., Nesbit, J.C., Liu, Q.: Intelligent tutoring systems and learning outcomes: a meta-analysis. J. Educ. Psychol. (2014)
Mark, M.A., Greer, J.E.: Evaluation methodologies for intelligent tutoring systems. J. Artif. Intell. Educ.4, 129–129 (1993)
Melis, E., Siekmann, J.: ActiveMath: an intelligent tutoring system for mathematics. Artif. Intell. Soft Comput.91–101 (2004)
Munshi, A., Biswas, G.: Personalization in OELEs: developing a data-driven framework to model and scaffold SRL processes. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11626, pp. 354–358. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-23207-8_65
Narciss, S., et al.: Exploring feedback and student characteristics relevant for personalizing feedback strategies. Comput. Educ.71, 56–76 (2014)
Nye, B.D., Graesser, A.C., Hu, X.: AutoTutor and family: a review of 17 years of natural language tutoring. Int. J. Artif. Intell. Educ.24(4), 427–469 (2014)
Onyema, E.M., et al.: Impact of Coronavirus pandemic on education. J. Educ. Pract.11(13), 108–121 (2020)
Penstein, C.R., Moore, J., VanLehn, K., Allbritton, D.: A comparative evaluation of socratic versus didactic tutoring. Ann. Meeting Cogn. Sci. Soc.23 (2001)
Psotka, J., Massey, D., Mutter, S.: Intelligent Tutoring Systems: Lessons Learned. Lawrence Erlbaum Associates, Hillsdale (1988)
Rus, V., Stefanescu, D., Baggett, W., Niraula, N., Franceschetti, D., Graesser, A.C.: Macro-adaptation in conversational intelligent tutoring matters. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 242–247. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-07221-0_29
Rus, V., Stefanescu, D., Niraula, N., Graesser, A.C.: DeepTutor: towards macro-and micro-adaptive conversational intelligent tutoring at scale. In: Proceedings of the first ACM Conference on Learning@ Scale Conference, pp. 209–210 (2014)
Sampson, D., Karagiannidis, C.: Personalised learning: educational, technological and standarisation perspective. Digit. Educ. Rev.4, 24–39 (2002)
Serban, I.V., et al.: A large-scale, open-domain, mixed-interface dialogue-based ITS for STEM. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 387–392. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-52240-7_70
Kochmar, E., Vu, D.D., Belfer, R., Gupta, V., Serban, I.V., Pineau, J.: Automated personalized feedback improves learning gains in an intelligent tutoring system. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 140–146. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-52240-7_26
Grenander, M., Belfer, R., Kochmar, E., Serban, I.V., St-Hilaire, F., Cheung, J.C.: Deep discourse analysis for generating personalized feedback in intelligent tutor systems. In: The 11th Symposium on Educational Advances in Artificial Intelligence (2021)
Stash, N.V., Cristea, A.I., De Bra, P.M.: Authoring of learning styles in adaptive hypermedia: problems and solutions. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters, pp. 114–123 (2004)
Tan, Y., Quintana, R.M.: What can we learn about learner interaction when one course is hosted on two MOOC platforms? In: Companion Proceedings to the International Conference on Learning Analytics and Knowledge (LAK), pp. 155–156 (2019)
Tomkins, S., Ramesh, A., Getoor, L.: Predicting Post-Test Performance from Online Student Behavior: A High School MOOC Case Study. International Educational Data Mining Society (2016)
VanLehn, K., Graesser, A.C., Jackson, G., Jordan, P., Olney, A., Rose, C.P.: When are tutorial dialogues more effective than reading? Cogn. Sci.31(1), 3–62 (2007)
VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. (2011)
Wang, Y., Paquette, L., Baker, R.: A longitudinal study on learner career advancement in MOOCs. J. Learn. Anal.1(3), 203–206 (2014)
Wood, D., Wood, H.: Vygotsky, tutoring and learning. Oxf. Rev. Educ.22(1), 5–16 (1996)
Woolf, B.: Building Intelligent Interactive Tutors. Morgan Kaufmann Publishers, Burlington (2009)
Yin, B., Patikorn, T., Botelho, A.F., Heffernan, N.T.: Observing personalizations in learning: identifying heterogeneous treatment effects using causal trees. In: Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, pp. 299–302 (2017)
Author information
Authors and Affiliations
Korbit Technologies Inc., Montreal, Canada
Francois St-Hilaire, Nathan Burns, Robert Belfer, Muhammad Shayan, Ariella Smofsky, Dung Do Vu, Antoine Frau, Joseph Potochny, Farid Faraji, Vincent Pavero, Neroli Ko, Ansona Onyi Ching, Sabina Elkins, Anush Stepanyan, Adela Matajova, Laurent Charlin, Yoshua Bengio, Iulian Vlad Serban & Ekaterina Kochmar
Quebec Artificial Intelligence Institute (Mila), Montreal, Canada
Laurent Charlin & Yoshua Bengio
University of Bath, Bath, UK
Ekaterina Kochmar
- Francois St-Hilaire
You can also search for this author inPubMed Google Scholar
- Nathan Burns
You can also search for this author inPubMed Google Scholar
- Robert Belfer
You can also search for this author inPubMed Google Scholar
- Muhammad Shayan
You can also search for this author inPubMed Google Scholar
- Ariella Smofsky
You can also search for this author inPubMed Google Scholar
- Dung Do Vu
You can also search for this author inPubMed Google Scholar
- Antoine Frau
You can also search for this author inPubMed Google Scholar
- Joseph Potochny
You can also search for this author inPubMed Google Scholar
- Farid Faraji
You can also search for this author inPubMed Google Scholar
- Vincent Pavero
You can also search for this author inPubMed Google Scholar
- Neroli Ko
You can also search for this author inPubMed Google Scholar
- Ansona Onyi Ching
You can also search for this author inPubMed Google Scholar
- Sabina Elkins
You can also search for this author inPubMed Google Scholar
- Anush Stepanyan
You can also search for this author inPubMed Google Scholar
- Adela Matajova
You can also search for this author inPubMed Google Scholar
- Laurent Charlin
You can also search for this author inPubMed Google Scholar
- Yoshua Bengio
You can also search for this author inPubMed Google Scholar
- Iulian Vlad Serban
You can also search for this author inPubMed Google Scholar
- Ekaterina Kochmar
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toEkaterina Kochmar.
Editor information
Editors and Affiliations
Technion – Israel Institute of Technology, Haifa, Israel
Ido Roll
Arizona State University, Tempe, AZ, USA
Danielle McNamara
Utrecht University, Utrecht, The Netherlands
Sergey Sosnovsky
London Knowledge Lab, London, UK
Rose Luckin
University of Leeds, Leeds, UK
Vania Dimitrova
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
St-Hilaire, F.et al. (2021). A Comparative Study of Learning Outcomes for Online Learning Platforms. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12749. Springer, Cham. https://doi.org/10.1007/978-3-030-78270-2_59
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-78269-6
Online ISBN:978-3-030-78270-2
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative