Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Variational Bayesian Sequence-to-Sequence Networks for Memory-Efficient Sign Language Translation

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

  • 1989Accesses

Abstract

Memory-efficient continuous Sign Language Translation is a significant challenge for the development of assisted technologies with real-time applicability for the deaf. In this work, we introduce a paradigm of designing recurrent deep networks whereby the output of the recurrent layer is derived from appropriate arguments from nonparametric statistics. A novel variational Bayesian sequence-to-sequence network architecture is proposed that consists of a) a full Gaussian posterior distribution for data-driven memory compression and b) a nonparametric Indian Buffet Process prior for regularization applied on the Gated Recurrent Unit non-gate weights. We dub our approach Stick-Breaking Recurrent network and show that it can achieve a substantial weight compression without diminishing modeling performance.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Softwarehttp://tensorflow.org

  2. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in Neural Information Processing Systems, pp. 2654–2662 (2014)

    Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  4. Camgoz, N.C., Hadfield, S., Koller, O., Bowden, R.: SubUNets: end-to-end hand shape and continuous sign language recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3075–3084. IEEE (2017)

    Google Scholar 

  5. Chatzis, S.: Indian buffet process deep generative models for semi-supervised classification. In: IEEE ICASSP (2018)

    Google Scholar 

  6. Chatzis, S.P., Korkinof, D., Demiris, Y.: A quantum-statistical approach toward robot learning by demonstration. IEEE Trans. Rob.28(6), 1371–1381 (2012)

    Article  Google Scholar 

  7. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP (2014)

    Google Scholar 

  8. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv preprintarXiv:1409.1259 (2014)

  9. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep Learning, December 2014 (2014)

    Google Scholar 

  10. Cihan Camgoz, N., Hadfield, S., Koller, O., Ney, H., Bowden, R.: Neural sign language translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7784–7793 (2018)

    Google Scholar 

  11. Dreuw, P., et al.: The signspeak project-bridging the gap between signers and speakers. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010) (2010)

    Google Scholar 

  12. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning.arXiv:1506.02142 (2015)

  13. Graves, A.: Practical variational inference for neural networks. In: Proceedings of the NIPS (2011)

    Google Scholar 

  14. Griffiths, T.L., Ghahramani, Z.: Infinite latent feature models and the Indian buffet process. In: Proceedings of the NIPS (2005)

    Google Scholar 

  15. Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  16. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput.9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc.96, 161–173 (2001)

    Article MathSciNet  Google Scholar 

  19. Jang, E., Gu, S., Poole, B.: Categorical reparameterization using Gumbel-Softmax. In: Proceedings of the ICLR (2017)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprintarXiv:1412.6980 (2014)

  21. Kumaraswamy, P.: A generalized probability density function for double-bounded random processes. J. Hydrol.46(1–2), 79–88 (1980)

    Article  Google Scholar 

  22. Louizos, C., Ullrich, K., Welling, M.: Bayesian compression for deep learning. In: Proceedings of the NIPS (2017)

    Google Scholar 

  23. Luong, M.T., Brevdo, E., Zhao, R.: Neural machine translation (seq2seq) tutorial (2017)

    Google Scholar 

  24. Maddison, C., Mnih, A., Teh, Y.: The concrete distribution: a continuous relaxation of discrete random variables. In: International Conference on Learning Representations (2017)

    Google Scholar 

  25. Murray, K.: Lack of British sign language interpreters putting deaf people at risk. Guardian8 (2013)

    Google Scholar 

  26. Nalisnick, E., Smyth, P.: Stick-breaking variational autoencoders. In: Proceedings of the ICLR (2016)

    Google Scholar 

  27. Neklyudov, K., Molchanov, D., Ashukha, A., Vetrov, D.P.: Structured Bayesian pruning via log-normal multiplicative noise. In: Advances in Neural Information Processing Systems, pp. 6775–6784 (2017)

    Google Scholar 

  28. Panousis, K., Chatzis, S., Theodoridis, S.: Nonparametric Bayesian deep networks with local competition. In: International Conference on Machine Learning, pp. 4980–4988 (2019)

    Google Scholar 

  29. Partaourides, H., Chatzis, S.P.: Asymmetric deep generative models. Neurocomputing241, 90–96 (2017)

    Article  Google Scholar 

  30. Partaourides, H., Chatzis, S.P.: Deep network regularization via Bayesian inference of synaptic connectivity. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 30–41. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-57454-7_3

    Chapter  Google Scholar 

  31. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  32. Teh, Y.W., Görür, D., Ghahramani, Z.: Stick-breaking construction for the Indian buffet process. In: Proceedings of the AISTATS (2007)

    Google Scholar 

  33. Theodoridis, S.: Machine Learning: A Bayesian and Optimization Perspective. Academic Press, Cambridge (2015)

    Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Research Promotion Foundation of Cyprus, through the grant: INTERNATIONAL/USA/0118/0037.

Author information

Authors and Affiliations

  1. Cyprus University of Technology, Limassol, Cyprus

    Harris Partaourides, Andreas Voskou & Sotirios Chatzis

  2. University of Patras, Patras, Greece

    Dimitrios Kosmopoulos

  3. Rutgers University, New Brunswick, NJ, USA

    Dimitris N. Metaxas

Authors
  1. Harris Partaourides

    You can also search for this author inPubMed Google Scholar

  2. Andreas Voskou

    You can also search for this author inPubMed Google Scholar

  3. Dimitrios Kosmopoulos

    You can also search for this author inPubMed Google Scholar

  4. Sotirios Chatzis

    You can also search for this author inPubMed Google Scholar

  5. Dimitris N. Metaxas

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHarris Partaourides.

Editor information

Editors and Affiliations

  1. University of Nevada Reno, Reno, NV, USA

    George Bebis

  2. Stony Brook University, Stony Brook, NY, USA

    Zhaozheng Yin

  3. Drexel University, Philadelphia, PA, USA

    Edward Kim

  4. RWTH Aachen University, Aachen, Germany

    Jan Bender

  5. University of Edinburgh, Edinburgh, UK

    Kartic Subr

  6. IBM Research – Cambridge, Cambridge, MA, USA

    Bum Chul Kwon

  7. University of Waterloo, Waterloo, ON, Canada

    Jian Zhao

  8. Graz University of Technology, Graz, Austria

    Denis Kalkofen

  9. The Hong Kong Polytechnic University, Hong Kong, Hong Kong

    George Baciu

Rights and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Partaourides, H., Voskou, A., Kosmopoulos, D., Chatzis, S., N. Metaxas, D. (2020). Variational Bayesian Sequence-to-Sequence Networks for Memory-Efficient Sign Language Translation. In: Bebis, G.,et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_19

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp