- Zhe Xu16,17,
- Jie Luo17,18,
- Jiangpeng Yan16,
- Ritvik Pulya17,
- Xiu Li16,
- William Wells III17 &
- …
- Jayender Jagadeesan17
Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 12263))
Included in the following conference series:
9627Accesses
Abstract
Deformable image registration between Computed Tomography (CT) images and Magnetic Resonance (MR) imaging is essential for many image-guided therapies. In this paper, we propose a novel translation-based unsupervised deformable image registration method. Distinct from other translation-based methods that attempt to convert the multimodal problem (e.g., CT-to-MR) into a unimodal problem (e.g., MR-to-MR) via image-to-image translation, our method leverages the deformation fields estimated from both: (i) the translated MR image and (ii) the original CT image in a dual-stream fashion, and automatically learns how to fuse them to achieve better registration performance. The multimodal registration network can be effectively trained by computationally efficient similarity metrics without any ground-truth deformation. Our method has been evaluated on two clinical datasets and demonstrates promising results compared to state-of-the-art traditional and learning-based methods.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 11439
- Price includes VAT (Japan)
- Softcover Book
- JPY 14299
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armanious, K., Jiang, C., Abdulatif, S., Küstner, T., Gatidis, S., Yang, B.: Unsupervised medical image translation using cycle-MedGAN. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal.12(1), 26–41 (2008)
Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ants similarity metric performance in brain image registration. NeuroImage54, 2033–2044 (2011)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)
Cao, X., et al.: Deformable image registration based on similarity-steered CNN regression. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 300–308. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-66182-7_35
Cao, X., Yang, J., Wang, L., Xue, Z., Wang, Q., Shen, D.: Deep learning based inter-modality image registration supervised by intra-modality similarity. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 55–63. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00919-9_7
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology26(3), 297–302 (1945)
Heinrich, M.P., et al.: Mind: modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal.16(7), 1423–1435 (2012)
Hiasa, Y., et al.: Cross-modality image synthesis from unpaired data using CycleGAN. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 31–41. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00536-8_4
Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)
Hu, X., Kang, M., Huang, W., Scott, M.R., Wiest, R., Reyes, M.: Dual-stream pyramid registration network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 382–390. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-32245-8_43
Hu, Y., et al.: Label-driven weakly-supervised learning for multimodal deformable image registration. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1070–1074. IEEE (2018)
Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal.49, 1–13 (2018)
Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)
Kuang, D., Schmah, T.: FAIM – a ConvNet method for unsupervised 3D medical image registration. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 646–654. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-32692-0_74
Liu, C., Ma, L., Lu, Z., Jin, X., Xu, J.: Multimodal medical image registration via common representations learning and differentiable geometric constraints. Electron. Lett.55(6), 316–318 (2019)
Mahapatra, D., Ge, Z., Sedai, S., Chakravorty, R.: Joint registration and segmentation of Xray images using generative adversarial networks. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 73–80. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00919-9_9
Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-20351-1_19
Sedghi, A., et al.: Semi-supervised image registration using deep learning. In: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10951, p. 109511G. International Society for Optics and Photonics (2019)
Tanner, C., Ozdemir, F., Profanter, R., Vishnevsky, V., Konukoglu, E., Goksel, O.: Generative adversarial networks for mr-ct deformable image registration. arXiv preprintarXiv:1807.07349 (2018)
de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal.52, 128–143 (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process.13(4), 600–612 (2004)
Wei, D., et al.: Synthesis and inpainting-based MR-CT registration for image-guided thermal ablation of liver tumors. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 512–520. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-32254-0_57
West, J.B., et al.: Comparison and evaluation of retrospective intermodality image registration techniques. In: Medical Imaging 1996: Image Processing, vol. 2710, pp. 332–347. International Society for Optics and Photonics (1996)
Yang, H., et al.: Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 174–182. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00889-5_20
Zhao, S., Lau, T., Luo, J., Eric, I., Chang, C., Xu, Y.: Unsupervised 3D end-to-end medical image registration with volume tweening network. IEEE J. Biomed. Health Inform. (2019)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Cyclegan (2017).https://github.com/xhujoy/CycleGAN-tensorflow
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgement
This project was supported by the National Institutes of Health (Grant No. R01EB025964, R01DK119269, and P41EB015898) and the Overseas Cooperation Research Fund of Tsinghua Shenzhen International Graduate School (Grant No. HW2018008).
Author information
Authors and Affiliations
Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
Zhe Xu, Jiangpeng Yan & Xiu Li
Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
Zhe Xu, Jie Luo, Ritvik Pulya, William Wells III & Jayender Jagadeesan
Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
Jie Luo
- Zhe Xu
You can also search for this author inPubMed Google Scholar
- Jie Luo
You can also search for this author inPubMed Google Scholar
- Jiangpeng Yan
You can also search for this author inPubMed Google Scholar
- Ritvik Pulya
You can also search for this author inPubMed Google Scholar
- Xiu Li
You can also search for this author inPubMed Google Scholar
- William Wells III
You can also search for this author inPubMed Google Scholar
- Jayender Jagadeesan
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJayender Jagadeesan.
Editor information
Editors and Affiliations
University of Toronto, Toronto, ON, Canada
Anne L. Martel
The University of British Columbia, Vancouver, BC, Canada
Purang Abolmaesumi
University College London, London, UK
Danail Stoyanov
École Centrale de Nantes, Nantes, France
Diana Mateus
EURECOM, Biot, France
Maria A. Zuluaga
Chinese Academy of Sciences, Beijing, China
S. Kevin Zhou
Sorbonne University, Paris, France
Daniel Racoceanu
The Hebrew University of Jerusalem, Jerusalem, Israel
Leo Joskowicz
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Z.et al. (2020). Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image Registration. In: Martel, A.L.,et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_22
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-59715-3
Online ISBN:978-3-030-59716-0
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative