Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

All at Once: Temporally Adaptive Multi-frame Interpolation with Advanced Motion Modeling

  • Conference paper
  • First Online:

Abstract

Recent advances in high refresh rate displays as well as the increased interest in high rate of slow motion and frame up-conversion fuel the demand for efficient and cost-effective multi-frame video interpolation solutions. To that regard, inserting multiple frames between consecutive video frames are of paramount importance for the consumer electronics industry. State-of-the-art methods are iterative solutions interpolating one frame at the time. They introduce temporal inconsistencies and clearly noticeable visual artifacts.

Departing from the state-of-the-art, this work introduces a true multi-frame interpolator. It utilizes a pyramidal style network in the temporal domain to complete the multi-frame interpolation task in one-shot. A novel flow estimation procedure using a relaxed loss function, and an advanced, cubic-based, motion model is also used to further boost interpolation accuracy when complex motion segments are encountered. Results on the Adobe240 dataset show that the proposed method generates visually pleasing, temporally consistent frames, outperforms the current best off-the-shelf method by 1.57 dB in PSNR with 8 times smaller model and 7.7 times faster. The proposed method can be easily extended to interpolate a large number of new frames while remaining efficient because of the one-shot mechanism.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision92(1), 1–31 (2011)

    Article  Google Scholar 

  2. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  3. Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: MEMC-Net: motion estimation and motion compensation driven neural network for video interpolation and enhancement. arXiv preprintarXiv:1810.08768 (2018)

  4. Bao, W., Zhang, X., Chen, L., Ding, L., Gao, Z.: High-order model and dynamic filtering for frame rate up-conversion. IEEE Trans. Image Process.27(8), 3813–3826 (2018)

    Article MathSciNet  Google Scholar 

  5. Castagno, R., Haavisto, P., Ramponi, G.: A method for motion adaptive frame rate up-conversion. IEEE Trans. Circuits Syst. Video Technol.6(5), 436–446 (1996)

    Article  Google Scholar 

  6. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

    Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  10. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9000–9008 (2018)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprintarXiv:1412.6980 (2014)

  12. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  13. Lee, W.H., Choi, K., Ra, J.B.: Frame rate up conversion based on variational image fusion. IEEE Trans. Image Process.23(1), 399–412 (2013)

    Article MathSciNet  Google Scholar 

  14. Liu, Y.L., Liao, Y.T., Lin, Y.Y., Chuang, Y.Y.: Deep video frame interpolation using cyclic frame generation. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  15. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4463–4471 (2017)

    Google Scholar 

  16. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  17. Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1710 (2018)

    Google Scholar 

  18. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 670–679 (2017)

    Google Scholar 

  19. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 261–270 (2017)

    Google Scholar 

  20. Peleg, T., Szekely, P., Sabo, D., Sendik, O.: IM-Net for high resolution video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2398–2407 (2019)

    Google Scholar 

  21. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)

    Google Scholar 

  22. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4161–4170 (2017)

    Google Scholar 

  23. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279–1288 (2017)

    Google Scholar 

  24. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  25. Wu, J., Yuen, C., Cheung, N.M., Chen, J., Chen, C.W.: Modeling and optimization of high frame rate video transmission over wireless networks. IEEE Trans. Wireless Commun.15(4), 2713–2726 (2015)

    Article  Google Scholar 

  26. Xu, X., Siyao, L., Sun, W., Yin, Q., Yang, M.H.: Quadratic video interpolation. In: Advances in Neural Information Processing Systems, pp. 1645–1654 (2019)

    Google Scholar 

  27. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vision (IJCV)127(8), 1106–1125 (2019)

    Article  Google Scholar 

  28. Yuan, L., Chen, Y., Liu, H., Kong, T., Shi, J.: Zoom-in-to-check: boosting video interpolation via instance-level discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12183–12191 (2019)

    Google Scholar 

  29. Zhang, H., Shen, C., Li, Y., Cao, Y., Liu, Y., Yan, Y.: Exploiting temporal consistency for real-time video depth estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1725–1734 (2019)

    Google Scholar 

  30. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Noah’s Ark Lab, Huawei Technologies, Toronto, Canada

    Zhixiang Chi, Rasoul Mohammadi Nasiri, Zheng Liu, Juwei Lu & Jin Tang

  2. University of Toronto, Toronto, Canada

    Konstantinos N. Plataniotis

Authors
  1. Zhixiang Chi

    You can also search for this author inPubMed Google Scholar

  2. Rasoul Mohammadi Nasiri

    You can also search for this author inPubMed Google Scholar

  3. Zheng Liu

    You can also search for this author inPubMed Google Scholar

  4. Juwei Lu

    You can also search for this author inPubMed Google Scholar

  5. Jin Tang

    You can also search for this author inPubMed Google Scholar

  6. Konstantinos N. Plataniotis

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence toZhixiang Chi orRasoul Mohammadi Nasiri.

Editor information

Editors and Affiliations

  1. University of Oxford, Oxford, UK

    Andrea Vedaldi

  2. Graz University of Technology, Graz, Austria

    Horst Bischof

  3. University of Freiburg, Freiburg im Breisgau, Germany

    Thomas Brox

  4. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

    Jan-Michael Frahm

1Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chi, Z., Mohammadi Nasiri, R., Liu, Z., Lu, J., Tang, J., Plataniotis, K.N. (2020). All at Once: Temporally Adaptive Multi-frame Interpolation with Advanced Motion Modeling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp