Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A New Lower Bound for the Eternal Vertex Cover Number of Graphs

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 12273))

Included in the following conference series:

  • 818Accesses

Abstract

We obtain a new lower bound for the eternal vertex cover number of an arbitrary graphG, in terms of the cardinality of a vertex cover of minimum size inG containing all its cut vertices. The consequences of the lower bound include a quadratic time algorithm for computing the eternal vertex cover number of chordal graphs.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    The results in Fomin et al. [6] are given for the variant of the problem in which more than one guard is allowed to be on a vertex in a configuration. But, the proof can be easily modified for to work for the other model as well.

  2. 2.

    Note that the definition of this graph class is more general than the one in[2].

References

  1. Anderson, M., Brigham, R., Carrington, J., Dutton, R., Vitray, R., Yellen, J.: Graphs simultaneously achieving three vertex cover numbers. J. Comb. Math. Comb. Comput.91, 275–290 (2014)

    Google Scholar 

  2. Babu, J., Chandran, L.S., Francis, M., Prabhakaran, V., Rajendraprasad, D., Warrier, J.N.: On graphs whose eternal vertex cover number and vertex cover number coincide. arxiv,https://arxiv.org/abs/1812.05125v2 (April 2019)

  3. Babu, J., Chandran, L.S., Francis, M., Prabhakaran, V., Rajendraprasad, D., Warrier, J.N.: On graphs with minimal eternal vertex cover number. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 263–273. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-11509-8_22

    Chapter  Google Scholar 

  4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM41(1), 153–180 (1994)

    Article MathSciNet  Google Scholar 

  5. Chartrand, G., Pippert, R.E.: Locally connected graphs. Časopis pro pěstování matematiky99(2), 158–163 (1974)

    Article MathSciNet  Google Scholar 

  6. Fomin, F.V., Gaspers, S., Golovach, P.A., Kratsch, D., Saurabh, S.: Parameterized algorithm for eternal vertex cover. Inf. Process. Lett.110(16), 702–706 (2010)

    Article MathSciNet  Google Scholar 

  7. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J. Combin. Math. Combin. Comput.52, 169–180 (2005)

    MathSciNet MATH  Google Scholar 

  8. Goldwasser, J.L., Klostermeyer, W.F.: Tight bounds for eternal dominating sets in graphs. Discrete Math.308(12), 2589–2593 (2008)

    Article MathSciNet  Google Scholar 

  9. Hartnell, B., Mynhardt, C.: Independent protection in graphs. Discrete Math.335, 100–109 (2014)

    Article MathSciNet  Google Scholar 

  10. Klostermeyer, W.F., Mynhardt, C.M.: Graphs with equal eternal vertex cover and eternal domination numbers. Discrete Math.311, 1371–1379 (2011)

    Article MathSciNet  Google Scholar 

  11. Klostermeyer, W., Mynhardt, C.: Edge protection in graphs. Austr. J. Comb.45, 235–250 (2009)

    MathSciNet MATH  Google Scholar 

  12. Klostermeyer, W.F., Mynhardt, C.: Vertex covers and eternal dominating sets. Discrete Appl. Math.160(7), 1183–1190 (2012)

    Article MathSciNet  Google Scholar 

  13. Rinemberg, M., Soulignac, F.J.: The eternal dominating set problem for interval graphs. Inf. Process. Lett.146, 27–29 (2019)

    Article MathSciNet  Google Scholar 

  14. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput.5(2), 266–283 (1976)

    Article MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Indian Institute of Technology Palakkad, Palakkad, India

    Jasine Babu & Veena Prabhakaran

Authors
  1. Jasine Babu

    You can also search for this author inPubMed Google Scholar

  2. Veena Prabhakaran

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJasine Babu.

Editor information

Editors and Affiliations

  1. Georgia State University, Atlanta, USA

    Donghyun Kim

  2. Department of Mathematics and Physics, North Carolina Central University, Durham, NC, USA

    R. N. Uma

  3. Computer Science, Georgia State University, Atlanta, GA, USA

    Zhipeng Cai

  4. Korea University, Seoul, Korea (Republic of)

    Dong Hoon Lee

Rights and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babu, J., Prabhakaran, V. (2020). A New Lower Bound for the Eternal Vertex Cover Number of Graphs. In: Kim, D., Uma, R., Cai, Z., Lee, D. (eds) Computing and Combinatorics. COCOON 2020. Lecture Notes in Computer Science(), vol 12273. Springer, Cham. https://doi.org/10.1007/978-3-030-58150-3_3

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp