- Hugo López-Fernández19,20,21,
- Cristina P. Vieira22,23,
- Florentino Fdez-Riverola19,20,21,
- Miguel Reboiro-Jato19,20,21 &
- …
- Jorge Vieira22,23
Part of the book series:Advances in Intelligent Systems and Computing ((AISC,volume 1240))
Included in the following conference series:
Abstract
The identification in bacteria, of the set of genes and amino acid positions showing evidence for positive selection, can give insight, among others, on which genes and amino acid positions are responsible for modulating the host immune response. However, such analyses are time consuming, and the frequency of genes showing evidence for positively selected amino acid sites (PSS) can be low. Therefore, the quick identification of the set of genes that likely show PSS can lead to great savings in both computational and research time. Here, we present GenomeFastScreen, a Compi-based pipeline distributed as a Docker image, that automates the process of identifying genes that likely show PSS, starting from a set of FASTA files, one per genome, containing all coding sequences. GenomeFastScreen automatically removes problematic sequences such as those showing ambiguous positions and identifies orthologous gene sets. It is also possible to identify the orthologous genes in an external reference species, a requirement for comparisons across species, or to conduct gene ontology enrichment analyses when there is no data for the species being analysed. An example of what can be achieved when using the GenomeFastScreen pipeline is given forMycobacterium leprae that causes leprosy. In this species, after detailed analyses, PSS were found at 31 genes, including nine genes likely relevant in the context of leprosy. The orthologs of those genes inM. tuberculosum (the species used as external reference) areRv3632 (a protein membrane gene),Rv0177 (amce1 gene),PPE68 (a cell envelope protein),RpfB (a resuscitation-promoting factor),RecG (that provides protection against mitomycin C),lipQ andlipU (lipases) andRv3220c andtesB1 (esterases). Therefore, the study of these genes may reveal interesting hints on the modulation of the differentM. leprae phenotypes.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 17159
- Price includes VAT (Japan)
- Softcover Book
- JPY 21449
- Price includes VAT (Japan)
- Hardcover Book
- JPY 21449
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
References
Yang, Z.: PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics13, 555–556 (1997).https://doi.org/10.1093/bioinformatics/13.5.555
Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S.L., Scheffler, K.: FUBAR: a Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Mol. Biol. Evol.30, 1196–1205 (2013).https://doi.org/10.1093/molbev/mst030
Wilson, D.J., McVean, G.: Estimating diversifying selection and functional constraint in the presence of recombination. Genetics172, 1411–1425 (2006).https://doi.org/10.1534/genetics.105.044917
López-Fernández, H., Duque, P., Vázquez, N., Fdez-Riverola, F., Reboiro-Jato, M., Vieira, C.P., Vieira, J.: Inferring positive selection in large viral datasets. In: Fdez-Riverola, F., Rocha, M., Mohamad, M.S., Zaki, N., Castellanos-Garzón, J.A. (eds.) 13th International Conference on Practical Applications of Computational Biology and Bioinformatics, pp. 61–69. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-23873-5_8
Osório, N.S., Rodrigues, F., Gagneux, S., Pedrosa, J., Pinto-Carbó, M., Castro, A.G., Young, D., Comas, I., Saraiva, M.: Evidence for diversifying selection in a set of Mycobacterium tuberculosis genes in response to antibiotic- and nonantibiotic-related pressure. Mol. Biol. Evol.30, 1326–1336 (2013).https://doi.org/10.1093/molbev/mst038
Chavarro-Portillo, B., Soto, C.Y., Guerrero, M.I.: Mycobacterium leprae’s evolution and environmental adaptation. Acta Trop.197, 105041 (2019).https://doi.org/10.1016/j.actatropica.2019.105041
Shen, W., Le, S., Li, Y., Hu, F.: SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE11, e0163962 (2016).https://doi.org/10.1371/journal.pone.0163962
López-Fernández, H., Duque, P., Henriques, S., Vázquez, N., Fdez-Riverola, F., Vieira, C.P., Reboiro-Jato, M., Vieira, J.: Bioinformatics protocols for quickly obtaining large-scale data sets for phylogenetic inferences. Interdiscip. Sci. Comput. Life Sci.11, 1–9 (2019).https://doi.org/10.1007/s12539-018-0312-5
Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Vieira, C.P., Fonseca, N.A., Vieira, J.: ADOPS–Automatic Detection Of Positively Selected Sites. J Integr Bioinform.9, 200 (2012).https://doi.org/10.2390/biecoll-jib-2012-200
Vázquez, N., Vieira, C.P., Amorim, B.S.R., Torres, A., López-Fernández, H., Fdez-Riverola, F., Sousa, J.L.R., Reboiro-Jato, M., Vieira, J.: Large scale analyses and visualization of adaptive amino acid changes projects. Interdiscip. Sci. Comput. Life Sci.10, 24–32 (2018).https://doi.org/10.1007/s12539-018-0282-7
Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797 (2004).https://doi.org/10.1093/nar/gkh340
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P.: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol.61, 539–542 (2012).https://doi.org/10.1093/sysbio/sys029
Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., Thomas, P.D.: PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res.45, D183–D189 (2017).https://doi.org/10.1093/nar/gkw1138
Casali, N., White, A.M., Riley, L.W.: Regulation of the Mycobacterium tuberculosis mce1 operon. J. Bacteriol.188, 441–449 (2006).https://doi.org/10.1128/JB.188.2.441-449.2006
Shimono, N., Morici, L., Casali, N., Cantrell, S., Sidders, B., Ehrt, S., Riley, L.W.: Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Natl. Acad. Sci.100, 15918–15923 (2003).https://doi.org/10.1073/pnas.2433882100
Demangel, C., Brodin, P., Cockle, P.J., Brosch, R., Majlessi, L., Leclerc, C., Cole, S.T.: Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-kilodalton culture filtrate protein and ESAT-6. Infect. Immun.72, 2170–2176 (2004).https://doi.org/10.1128/IAI.72.4.2170-2176.2004
Squeglia, F., Romano, M., Ruggiero, A., Vitagliano, L., De Simone, A., Berisio, R.: Carbohydrate recognition by RpfB from Mycobacterium tuberculosis unveiled by crystallographic and molecular dynamics analyses. Biophys. J.104, 2530–2539 (2013).https://doi.org/10.1016/j.bpj.2013.04.040
Thakur, R.S., Basavaraju, S., Somyajit, K., Jain, A., Subramanya, S., Muniyappa, K., Nagaraju, G.: Evidence for the role ofMycobacterium tuberculosis RecG helicase in DNA repair and recombination. FEBS J.280, 1841–1860 (2013).https://doi.org/10.1111/febs.12208
Li, C., Li, Q., Zhang, Y., Gong, Z., Ren, S., Li, P., Xie, J.: Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU). Microbiol. Res.196, 7–16 (2017).https://doi.org/10.1016/j.micres.2016.12.005
Acknowledgments
The SING group thanks the CITI (Centro de Investigación, Transferencia e Innovación) from the University of Vigo for hosting its IT infrastructure. This work was partially supported by the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) under the scope of the strategic funding ED431C2018/55-GRC Competitive Reference Group.
Author information
Authors and Affiliations
Department of Computer Science, University of Vigo, ESEI, Campus As Lagoas, 32004, Ourense, Spain
Hugo López-Fernández, Florentino Fdez-Riverola & Miguel Reboiro-Jato
The Biomedical Research Centre (CINBIO), Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
Hugo López-Fernández, Florentino Fdez-Riverola & Miguel Reboiro-Jato
SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
Hugo López-Fernández, Florentino Fdez-Riverola & Miguel Reboiro-Jato
Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
Cristina P. Vieira & Jorge Vieira
Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
Cristina P. Vieira & Jorge Vieira
- Hugo López-Fernández
You can also search for this author inPubMed Google Scholar
- Cristina P. Vieira
You can also search for this author inPubMed Google Scholar
- Florentino Fdez-Riverola
You can also search for this author inPubMed Google Scholar
- Miguel Reboiro-Jato
You can also search for this author inPubMed Google Scholar
- Jorge Vieira
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJorge Vieira.
Editor information
Editors and Affiliations
Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, Genoa, Genova, Italy
Gabriella Panuccio
Department de Informática, Universidade do Minho, Braga, Portugal
Miguel Rocha
Computer Science Department, University of Vigo, Vigo, Spain
Florentino Fdez-Riverola
Institute for Artificial Intelligence and Big Data (AIBIG), Universiti Malaysia Kelantan, Kampus Kota, Kota Bharu, Malaysia
Mohd Saberi Mohamad
Biotechnology, Intelligent Systems and Educational Technology (BISITE) Research Group, University of Salamanca, Salamanca, Salamanca, Spain
Roberto Casado-Vara
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
López-Fernández, H., Vieira, C.P., Fdez-Riverola, F., Reboiro-Jato, M., Vieira, J. (2021). Inferences onMycobacterium Leprae Host Immune Response Escape and Antibiotic Resistance Using Genomic Data and GenomeFastScreen. In: Panuccio, G., Rocha, M., Fdez-Riverola, F., Mohamad, M., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020). PACBB 2020. Advances in Intelligent Systems and Computing, vol 1240. Springer, Cham. https://doi.org/10.1007/978-3-030-54568-0_5
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-54567-3
Online ISBN:978-3-030-54568-0
eBook Packages:Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative