Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 12102))
Included in the following conference series:
837Accesses
Abstract
This paper intends to understand and to improve the working principle of decomposition-based multi-objective evolutionary algorithms. We review the design of the well-establishedMoea/d framework to support the smooth integration of different strategies for sub-problem selection, while emphasizing the role of the population size and of the number of offspring created at each generation. By conducting a comprehensive empirical analysis on a wide range of multi- and many-objective combinatorial NK landscapes, we provide new insights into the combined effect of those parameters on the anytime performance of the underlying search process. In particular, we show that even a simple random strategy selecting sub-problems at random outperforms existing sophisticated strategies. We also study the sensitivity of such strategies with respect to the ruggedness and the objective space dimension of the target problem.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghabeig, M., Jaszkiewicz, A.: Experimental analysis of design elements of scalarizing function-based multiobjective evolutionary algorithms. Soft. Comput.23(21), 10769–10780 (2018).https://doi.org/10.1007/s00500-018-3631-x
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res.181(3), 1653–1669 (2007)
Cai, X., Li, Y., Fan, Z., Zhang, Q.: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans. Evolut. Comput.19(4), 508–523 (2015)
Chiang, T., Lai, Y.: MOEA/D-AMS: improving MOEA/D by an adaptive mating selection mechanism. In: CEC 2011, pp. 1473–1480 (2011)
Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can Hillclimb faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput.22(5), 720–732 (2018)
Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv.45(3), 1–33 (2013)
Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)
Glasmachers, T., Naujoks, B., Rudolph, G.: Start small, grow big? Saving multi-objective function evaluations. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 579–588. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-10762-2_57
Ishibuchi, H., Imada, R., Masuyama, N., Nojima, Y.: Two-layered weight vector specification in decomposition-based multi-objective algorithms for many-objective optimization problems. In: CEC, pp. 2434–2441 (2019)
Lavinas, Y., Aranha, C., Ladeira, M.: Improving resource allocation in MOEA/D with decision-space diversity metrics. In: Martín-Vide, C., Pond, G., Vega-Rodríguez, M.A. (eds.) TPNC 2019. LNCS, vol. 11934, pp. 134–146. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-34500-6_9
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput.13(2), 284–302 (2009)
Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching-based selection in evolutionary multiobjective optimization. IEEE TEC18(6), 909–923 (2014)
Marquet, G., Derbel, B., Liefooghe, A., Talbi, E.-G.: Shake them all! Rethinking selection and replacement in MOEA/D. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 641–651. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-10762-2_63
Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom. Control13(3), 270–276 (1968)
Tanabe, R., Ishibuchi, H.: An analysis of control parameters of MOEA/D under two different optimization scenarios. Appl. Soft Comput.70, 22–40 (2018)
Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE TEC21(3), 440–462 (2017)
Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-Landscapes with correlated objectives. Eur. J. Oper. Res.227(2), 331–342 (2013)
Wang, P., et al.: A new resource allocation strategy based on the relationship between subproblems for MOEA/D. Inf. Sci.501, 337–362 (2019)
Wang, Z., Zhang, Q., Zhou, A., Gong, M., Jiao, L.: Adaptive replacement strategies for MOEA/D. IEEE Trans. Cybern.46(2), 474–486 (2016)
Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theor. Comput. Sci.403(1), 104–120 (2008)
Zapotecas-Martínez, S., Aguirre, H., Tanaka, K., Coello, C.: On the low-discrepancy sequences and their use in MOEA/D for high-dimensional objective spaces. In: Congress on Evolutionary Computation (CEC 2015), pp. 2835–2842 (2015)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput.11(6), 712–731 (2007)
Zhou, A., Zhang, Q.: Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput.20(1), 52–64 (2016)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput.7(2), 117–132 (2003)
Acknowledgments
This work was supported by the French national research agency (ANR-16-CE23-0013-01) and the Research Grants Council of Hong Kong (RGC Project No. A-CityU101/16).
Author information
Authors and Affiliations
University of Lille, CRIStAL, Inria, Lille, France
Geoffrey Pruvost, Bilel Derbel & Arnaud Liefooghe
University of Exeter, Exeter, UK
Ke Li
City University Hong Kong, Kowloon Tong, Hong Kong
Qingfu Zhang
- Geoffrey Pruvost
You can also search for this author inPubMed Google Scholar
- Bilel Derbel
You can also search for this author inPubMed Google Scholar
- Arnaud Liefooghe
You can also search for this author inPubMed Google Scholar
- Ke Li
You can also search for this author inPubMed Google Scholar
- Qingfu Zhang
You can also search for this author inPubMed Google Scholar
Corresponding authors
Correspondence toGeoffrey Pruvost,Bilel Derbel,Arnaud Liefooghe,Ke Li orQingfu Zhang.
Editor information
Editors and Affiliations
University of Coimbra, Coimbra, Portugal
Luís Paquete
Aberystwyth University, Aberystwyth, UK
Christine Zarges
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pruvost, G., Derbel, B., Liefooghe, A., Li, K., Zhang, Q. (2020). On the Combined Impact of Population Size and Sub-problem Selection in MOEA/D. In: Paquete, L., Zarges, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2020. Lecture Notes in Computer Science(), vol 12102. Springer, Cham. https://doi.org/10.1007/978-3-030-43680-3_9
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-43679-7
Online ISBN:978-3-030-43680-3
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative