Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Conditioned Variational Auto-encoder for Detecting Osteoporotic Vertebral Fractures

  • Conference paper
  • First Online:

Abstract

Detection of osteoporotic vertebral fractures in CT scans is a particularly challenging task that was never sufficiently addressed. This is due to the large variation among healthy vertebrae and the different shapes a fracture could present itself in. In this paper, we combine areconstructing conditioned-variational auto-encoder architecture and adiscriminating multi-layer-perceptron (MLP) to capture these different shapes. We also introduce a vertebrae-specific loss-weighing regime that maximizes the classification yield. Furthermore, we ‘look into’ the learnt network by investigating the saliency maps, traversing the latent space and demonstrating its smoothness. Finally, we report our results on two datasets, including the publicly available xVertSeg dataset achieving an F1 score of 84%.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Williams, A.L., Al-Busaidi, A., Sparrow, P.J., Adams, J.E., Whitehouse, R.W.: Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur. J. Radiol.69(1), 179–183 (2009)

    Article  Google Scholar 

  2. Genant, H.K., Wu, C.Y., van Kuijk, C., Nevitt, M.C.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res.8(9), 1137–1148 (1993)

    Article  Google Scholar 

  3. Cooper, C., O’neill, T., Silman, A.: European vertebral osteoporosis study group: the epidemiology of vertebral fractures. Bone14, 89–97 (1993)

    Article  Google Scholar 

  4. Carberry, G.A., Pooler, B.D., Binkley, N., Lauder, T.B., Bruce, R.J., Pickhardt, P.J.: Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology268(1), 120–126 (2013)

    Article  Google Scholar 

  5. Schreiber, J.J., Anderson, P.A., Rosas, H.G., Buchholz, A.L., Au, A.G.: Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. JBJS93(11), 1057–1063 (2011)

    Article  Google Scholar 

  6. Tomita, N., Cheung, Y.Y., Hassanpour, S.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med.98, 8–15 (2018)

    Article  Google Scholar 

  7. Biffi, C., et al.: Learning interpretable anatomical features through deep generative models: application to cardiac remodeling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 464–471. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00934-2_52

    Chapter  Google Scholar 

  8. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Representations (2017)

    Google Scholar 

  9. Roy, A.G., Conjeti, S., Sheet, D., Katouzian, A., Navab, N., Wachinger, C.: Error corrective boosting for learning fully convolutional networks with limited data. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 231–239. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-66179-7_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, Technical University of Munich, Munich, Germany

    Malek Husseini, Anjany Sekuboyina, Amirhossein Bayat & Bjoern H. Menze

  2. Klinikum rechts der Isar, Technical University of Munich, Munich, Germany

    Malek Husseini, Anjany Sekuboyina, Amirhossein Bayat, Maximilian Loeffler & Jan S. Kirschke

Authors
  1. Malek Husseini

    You can also search for this author inPubMed Google Scholar

  2. Anjany Sekuboyina

    You can also search for this author inPubMed Google Scholar

  3. Amirhossein Bayat

    You can also search for this author inPubMed Google Scholar

  4. Bjoern H. Menze

    You can also search for this author inPubMed Google Scholar

  5. Maximilian Loeffler

    You can also search for this author inPubMed Google Scholar

  6. Jan S. Kirschke

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMalek Husseini.

Editor information

Editors and Affiliations

  1. Worcester Polytechnic Institute, Worcester, MA, USA

    Yunliang Cai

  2. Xiamen University, Xiamen, China

    Liansheng Wang

  3. Old Dominion University, Norfolk, VA, USA

    Michel Audette

  4. Shanghai Jiao Tong University, Shanghai, China

    Guoyan Zheng

  5. Western University, London, ON, Canada

    Shuo Li

Rights and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Husseini, M., Sekuboyina, A., Bayat, A., Menze, B.H., Loeffler, M., Kirschke, J.S. (2020). Conditioned Variational Auto-encoder for Detecting Osteoporotic Vertebral Fractures. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds) Computational Methods and Clinical Applications for Spine Imaging. CSI 2019. Lecture Notes in Computer Science(), vol 11963. Springer, Cham. https://doi.org/10.1007/978-3-030-39752-4_3

Download citation

Publish with us

Societies and partnerships

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp