- David Walsh ORCID:orcid.org/0000-0003-2972-823313,14,
- Paul Clough ORCID:orcid.org/0000-0003-1739-175X14,16,
- Mark M. Hall ORCID:orcid.org/0000-0003-0081-427715,
- Frank Hopfgartner ORCID:orcid.org/0000-0003-0380-608814,
- Jonathan Foster ORCID:orcid.org/0000-0002-9439-088414 &
- …
- Georgios Kontonatsios ORCID:orcid.org/0000-0001-5935-470913
Part of the book series:Lecture Notes in Computer Science ((LNISA,volume 11799))
Included in the following conference series:
1887Accesses
Abstract
The websites of Cultural Heritage institutions attract the full range of users, from professionals to novices, for a variety of tasks. However, many institutions are reporting high bounce rates and therefore seeking ways to better engage users. The analysis of transaction logs can provide insights into users’ searching and navigational behaviours and support engagement strategies. In this paper we present the results from a transaction log analysis of web server logs representing user-system interactions from the seven websites of National Museums Liverpool (NML). In addition, we undertake an exploratory cluster analysis of users to identify potential user groups that emerge from the data. We compare this with previous studies of NML website users.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 8579
- Price includes VAT (Japan)
- Softcover Book
- JPY 10724
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Alternative algorithms such as k-modes (k-prototypes) and DBScan were also tested, but no stable clusters emerged.
- 5.
Based on theIP2Location IP4 allocated IP address ranges; however, it is noted that the United Nations only identifies 195.
References
Jones, S., Cunningham, S.J., McNab, R., Boddie, S.: A transaction log analysis of a digital library. Int. J. Digit. Libr.3(2), 152–169 (2000)
McKay, D., Buchanan, G., Chang, S.: It ain’t what you do, it’s the way that you do it: design guidelines to better support online browsing. Proc. Assoc. Inf. Sci. Technol.55(1), 347–356 (2018)
Peters, T.A.: The history and development of transaction log analysis. Library Hi Tech11(2), 41–66 (1993)
Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user queries on the web. Inf. Process. Manag.36(2), 207–227 (2000)
Ciber: Europeana 2012–2013: usage and performance update. Technical report, CIBER Research, July 2013
Walsh, D., Hall, M.M., Clough, P., Foster, J.: Characterising online museum users: a study of the National Museums Liverpool museum website. Int. J. Digit. Libr. (2018).https://doi.org/10.1007/s00799-018-0248-8
Walsh, D., Hall, M., Clough, P., Foster, J.: The ghost in the museum website: investigating the general public’s interactions with museum websites. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds.) TPDL 2017. LNCS, vol. 10450, pp. 434–445. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-67008-9_34
Farrell, S.: Search-log analysis: the most overlooked opportunity in web UX research, July 2017.https://www.nngroup.com/articles/search-log-analysis/. Accessed 14 Mar 2019
Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Internet Technol. (TOIT)3(1), 1–27 (2003)
Falk, J.H.: Identity and the Museum Visitor Experience. Left Coast Press, Walnut Creek (2009)
Templeton, C.A.: Museum visitor engagement through resonant, rich and interactive experiences (2011)
Spellerberg, M., Granata, E., Wambold, S.: Visitor-first, mobile-first: designing a visitor-centric mobile experience. In: Museums and the Web (2016)
Vilar, P., Šauperl, A.: Archival literacy: different users, different information needs, behaviour and skills. In: Kurbanoğlu, S., Špiranec, S., Grassian, E., Mizrachi, D., Catts, R. (eds.) ECIL 2014. CCIS, vol. 492, pp. 149–159. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-14136-7_16
Pantano, E.: Virtual cultural heritage consumption: a 3D learning experience. Int. J. Technol. Enhanc. Learn.3(5), 482–495 (2011)
Booth, B.: Understanding the information needs of visitors to museums. Mus. Manag. Curatorship17(2), 139–157 (1998)
Marchionini, G., Plaisant, C., Komlodi, A.: The people in digital libraries: multifaceted approaches to assessing needs and impact. In: Social Practice in Design and Evaluation, Digital Library Use, pp. 119–160 (2003)
Clough, P., Hill, T., Paramita, M.L., Goodale, P.: Europeana: what users search for and why. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds.) TPDL 2017. LNCS, vol. 10450, pp. 207–219. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-67008-9_17
Russell-Rose, T., Clough, P.: Mining search logs for usage patterns. In: Text Mining and Visualization: Case Studies using Open-Source Tools, vol. 40 (2016)
Kachhadiya, B.C., Patel, B.: A survey on sequential pattern mining algorithm for web log pattern data. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1269–1273. IEEE (2018)
Lau, T., Horvitz, E.: Patterns of search: analyzing and modeling web query refinement. In: Kay, J. (ed.) UM99 User Modeling. CICMS, vol. 407, pp. 119–128. Springer, Vienna (1999).https://doi.org/10.1007/978-3-7091-2490-1_12
Chen, H.M., Cooper, M.D.: Using clustering techniques to detect usage patterns in a web-based information system. J. Am. Soc. Inf. Sci. Technol.52(11), 888–904 (2001)
Wang, G., Zhang, X., Tang, S., Zheng, H., Zhao, B.Y.: Unsupervised clickstream clustering for user behavior analysis. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 225–236. ACM (2016)
Zhang, J., Kamps, J.: Search log analysis of user stereotypes, information seeking behavior, and contextual evaluation. In: Proceedings of the Third Symposium on Information Interaction in Context, pp. 245–254. ACM (2010)
Stenmark, D.: Identifying clusters of user behavior in intranet search engine log files. J. Am. Soc. Inf. Sci. Technol.59(14), 2232–2243 (2008)
He, D., Göker, A.: Detecting session boundaries from web user logs. In: Proceedings of the BCS-IRSG 22nd Annual Colloquium on Information Retrieval Research, pp. 57–66 (2000)
Bogaard, T., Hollink, L., Wielemaker, J., Hardman, L., van Ossenbruggen, J.: Searching for old news: user interests and behavior within a national collection. In: Proceedings of the 2019 Conference on Human Information Interaction and Retrieval, pp. 113–121. ACM (2019)
Bholowalia, P., Kumar, A.: EBK-means: a clustering technique based on elbow method and k-means in wsn. Int. J. Comput. Appl.105(9), 17–24 (2014)
Skov, M., Ingwersen, P.: Exploring information seeking behaviour in a digital museum context. In: Proceedings of the Second International Symposium on Information Interaction in Context, IIiX 2008, pp. 110–115. ACM, New York (2008)
Skov, M.: The reinvented museum: exploring information seeking behaviour in a digital museum context. Ph.D. thesis, Københavns Universitet’Københavns Universitet’, Faculty of Humanities, School of Library and Information Science, Royal School of Library and Information Science (2009, unpublished thesis)
Elsweiler, D., Wilson, M.L., Lunn, B.K.: Chapter 9 understanding casual-leisure information behaviour. In: New Directions in Information Behaviour. Library and Information Science, vol. 1, pp. 211–241. Emerald Group Publishing Limited (2011)
Acknowledgements
We would like to thank National Museums Liverpool for providing access to the web server transaction logs.
Author information
Authors and Affiliations
Edge Hill University, Ormskirk, Lancashire, UK
David Walsh & Georgios Kontonatsios
University of Sheffield, Sheffield, UK
David Walsh, Paul Clough, Frank Hopfgartner & Jonathan Foster
Martin Luther University Halle-Wittenberg, Halle, Germany
Mark M. Hall
Peak Indicators, Chesterfield, UK
Paul Clough
- David Walsh
You can also search for this author inPubMed Google Scholar
- Paul Clough
You can also search for this author inPubMed Google Scholar
- Mark M. Hall
You can also search for this author inPubMed Google Scholar
- Frank Hopfgartner
You can also search for this author inPubMed Google Scholar
- Jonathan Foster
You can also search for this author inPubMed Google Scholar
- Georgios Kontonatsios
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toDavid Walsh.
Editor information
Editors and Affiliations
University of La Rochelle, La Rochelle, France
Antoine Doucet
VU University Amsterdam, Amsterdam, The Netherlands
Antoine Isaac
Linnaeus University, Växjö, Sweden
Koraljka Golub
OsloMet – Oslo Metropolitan University, Oslo, Norway
Trond Aalberg
Kyoto University, Kyoto, Japan
Adam Jatowt
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Walsh, D., Clough, P., Hall, M.M., Hopfgartner, F., Foster, J., Kontonatsios, G. (2019). Analysis of Transaction Logs from National Museums Liverpool. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds) Digital Libraries for Open Knowledge. TPDL 2019. Lecture Notes in Computer Science(), vol 11799. Springer, Cham. https://doi.org/10.1007/978-3-030-30760-8_7
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-30759-2
Online ISBN:978-3-030-30760-8
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative