Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Extending an Anomaly Detection Benchmark with Auto-encoders, Isolation Forests, and RBMs

  • Conference paper
  • First Online:

Part of the book series:Communications in Computer and Information Science ((CCIS,volume 1078))

Included in the following conference series:

  • 1139Accesses

Abstract

In this paper, the recently published benchmark of Goldstein and Uchida [3] for unsupervised anomaly detection is extended with three anomaly detection techniques: Sparse Auto-Encoders, Isolation Forests, and Restricted Boltzmann Machines. The underlying mechanisms of these algorithms differ substantially from the more traditional anomaly detection algorithms, currently present in the benchmark. Results show that in three of the ten data sets, the new algorithms surpass the present collection of 19 algorithms. Moreover, a relation is noted between the nature of the outliers in a data set and the performance of specific (clusters of) anomaly detection algorithms.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Dubossarsky, E., Tyshetskiy, Y.: R package autoencoder, May 2014.https://CRAN.R-project.org/package=autoencoder

  2. Fischer, A., Igel, C.: An introduction to restricted Boltzmann machines. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 14–36. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-33275-3_2

    Chapter  Google Scholar 

  3. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PloS One11(4), e0152173 (2016)

    Article  Google Scholar 

  4. Hariri, S., Kind, M.C., Brunner, R.J.: Extended isolation forest. arXiv preprintarXiv:1811.02141 (2018)

  5. Hinton, G.E.: A practical guide to training restricted Boltzmann Machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-35289-8_32

    Chapter  Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science313(5786), 504–507 (2006)

    Article MathSciNet  Google Scholar 

  7. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Cluster Comput.9(5), 1–13 (2017)

    Google Scholar 

  8. Liu, F.T.: R package isolationforestd, August 2009.https://rdrr.io/rforge/IsolationForest/

  9. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  10. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: Proceedings, p. 89. Presses universitaires de Louvain (2015)

    Google Scholar 

  11. Ng, A.: Lecture notes on sparse autoencoders (2011).https://web.stanford.edu/class/cs294a/sparseAutoencoder-2011.pdf

  12. Pijnenburg, M.: Code used in experiments.https://github.com/PijnenburgMark/anomaly_detection_benchmark (2019). Accessed 01 June 2019

  13. Rong, X.: R package deepnet, March 2014.https://CRAN.R-project.org/package=deepnet

  14. Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., Klette, R.: Deep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenes. Comput. Vis. Image Underst.172, 88–97 (2018)

    Article  Google Scholar 

  15. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  16. Xu, J., Saebi, M., Ribeiro, B., Kaplan, L.M., Chawla, N.V.: Detecting anomalies in sequential data with higher-order networks. arXiv preprintarXiv:1712.09658 (2017)

Download references

Author information

Authors and Affiliations

  1. Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, Leiden, The Netherlands

    Mark Pijnenburg & Wojtek Kowalczyk

  2. Netherlands Tax and Customs Administration, Utrecht, The Netherlands

    Mark Pijnenburg

Authors
  1. Mark Pijnenburg

    You can also search for this author inPubMed Google Scholar

  2. Wojtek Kowalczyk

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMark Pijnenburg.

Editor information

Editors and Affiliations

  1. Kaunas University of Technology, Kaunas, Lithuania

    Robertas Damaševičius

  2. Kaunas University of Technology, Kaunas, Lithuania

    Giedrė Vasiljevienė

Rights and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pijnenburg, M., Kowalczyk, W. (2019). Extending an Anomaly Detection Benchmark with Auto-encoders, Isolation Forests, and RBMs. In: Damaševičius, R., Vasiljevienė, G. (eds) Information and Software Technologies. ICIST 2019. Communications in Computer and Information Science, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-030-30275-7_39

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp