Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Hybrid Function Sparse Representation Towards Image Super Resolution

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 11679))

  • 1045Accesses

Abstract

Sparse representation with training-based dictionary has been shown successful on super resolution(SR) but still have some limitations. Based on the idea of making the magnification of function curve without losing its fidelity, we proposed a function based dictionary on sparse representation for super resolution, called hybrid function sparse representation (HFSR). The dictionary we designed is directly generated by preset hybrid functions without additional training, which can be scaled to any size as is required due to its scalable property. We mixed approximated Heaviside function (AHF), sine function and DCT function as the dictionary. Multi-scale refinement is then proposed to utilize the scalable property of the dictionary to improve the results. In addition, a reconstruct strategy is adopted to deal with the overlaps. The experiments on ‘Set14’ SR dataset show that our method has an excellent performance particularly with regards to images containing rich details and contexts compared with non-learning based state-of-the art methods.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A., et al.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process.54(11), 4311 (2006)

    Article  Google Scholar 

  2. Babacan, S.D., Molina, R., Katsaggelos, A.K.: Variational bayesian super resolution. IEEE Trans. Image Process.20(4), 984–999 (2011)

    Article MathSciNet  Google Scholar 

  3. Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y.: Soft edge smoothness prior for alpha channel super resolution. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  4. Deng, L.J., Guo, W., Huang, T.Z.: Single image super-resolution by approximated Heaviside functions. Inf. Sci.348, 107–123 (2016).https://doi.org/10.1016/j.ins.2016.02.015

    Article MathSciNet MATH  Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  6. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process.22(4), 1620–1630 (2013)

    Article MathSciNet  Google Scholar 

  7. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process.20(7), 1838–1857 (2011)

    Article MathSciNet  Google Scholar 

  8. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal\(\ell \)1-norm solution is also the sparsest solution. Commun. Pure and Appl. Math.: A J. Issued Courant Inst. Math. Sci.59(6), 797–829 (2006)

    Article MathSciNet  Google Scholar 

  9. Fattal, R.: Image upsampling via imposed edge statistics. ACM Trans. Graph. (TOG)26(3), 95 (2007)

    Article  Google Scholar 

  10. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis.40(1), 25–47 (2000)

    Article  Google Scholar 

  11. Getreuer, P.: Contour stencils: total variation along curves for adaptive image interpolation. SIAM J. Imag. Sci.4(3), 954–979 (2011)

    Article MathSciNet  Google Scholar 

  12. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 349–356. IEEE, Kyoto September 2009.https://doi.org/10.1109/ICCV.2009.5459271

  13. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems. pp. 2672–2680 (2014)

    Google Scholar 

  14. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell.32(6), 1127–1133 (2010)

    Article  Google Scholar 

  15. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  16. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process.10(10), 1521–1527 (2001)

    Article  Google Scholar 

  17. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: Enhancenet: single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4491–4500 (2017)

    Google Scholar 

  18. Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8. IEEE (2008)

    Google Scholar 

  19. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodological)58(1), 267–288 (1996)

    MathSciNet MATH  Google Scholar 

  20. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process.19(11), 2861–2873 (2010).https://doi.org/10.1109/TIP.2010.2050625

    Article MathSciNet MATH  Google Scholar 

  21. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  22. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process.15(8), 2226–2238 (2006)

    Article  Google Scholar 

  23. Zhang, Y., Liu, J., Yang, W., Guo, Z.: Image super-resolution based on structure-modulated sparse representation. IEEE Trans. Image Process.24(9), 2797–2810 (2015)

    Article MathSciNet  Google Scholar 

  24. Zhang, Z., Li, F., Chow, T.W., Zhang, L., Yan, S.: Sparse codes auto-extractor for classification: a joint embedding and dictionary learning framework for representation. IEEE Trans. Signal Process.64(14), 3790–3805 (2016)

    Article MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. ShanghaiTech University, School of Information Science and Technology, Shanghai, 201210, China

    Junyi Bian, Baojun Lin & Ke Zhang

  2. Chinese Academy of Sciences, Shanghai Engineering Center for Microsatellites, Shanghai, 201203, China

    Baojun Lin

Authors
  1. Junyi Bian

    You can also search for this author inPubMed Google Scholar

  2. Baojun Lin

    You can also search for this author inPubMed Google Scholar

  3. Ke Zhang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toBaojun Lin.

Editor information

Editors and Affiliations

  1. Department of Computer and Electrical Engineering and Applied Mathematics, University of Salerno, Fisciano (SA), Italy

    Mario Vento

  2. Department of Computer and Electrical Engineering and Applied Mathematics, University of Salerno, Fisciano (SA), Italy

    Gennaro Percannella

Rights and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bian, J., Lin, B., Zhang, K. (2019). Hybrid Function Sparse Representation Towards Image Super Resolution. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11679. Springer, Cham. https://doi.org/10.1007/978-3-030-29891-3_3

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp