Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

An Approximation Algorithm for the Dynamick-level Facility Location Problem

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 11640))

Included in the following conference series:

  • 611Accesses

Abstract

In this paper, we consider the dynamick-level facility location problem, which is a generalization of the uncapacitatedk-level facility location problem when considering time factor. We present a combinatorial primal-dual approximation algorithm for the problem which finds a solution within 6 times the optimum. This approximation ratio under a dynamic setting coincides with that of the simple dual ascent 6-approximation algorithm for the (static) multilevel facility location problem (Bumb, 2001) with a weak triangle inequality property.

Supported by National Natural Science Foundation of China (Grant Nos. 61425024, 11531011, 11771013, 11871081, 11871280, 11471003), and National Thousand Young Talents Program, and Qing Lan Project.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algorithm for the\(k\)-level uncapacitated facility location problem. Inf. Process. Lett.72(5–6), 161–167 (1999)

    Article MathSciNet  Google Scholar 

  2. Ageev, A., Ye, Y., Zhang, J.: Improved combinatorial approximation algorithms for the\(k\)-level facility location problem. SIAM J. Discrete Math.18(1), 207–217 (2004)

    Article MathSciNet  Google Scholar 

  3. Bumb, A., Kern, W.: A simple dual ascent algorithm for the multilevel facility location problem. In: Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2001. LNCS, vol. 2129, pp. 55–63. Springer, Heidelberg (2001).https://doi.org/10.1007/3-540-44666-4_10

    Chapter  Google Scholar 

  4. Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location problem. In: Mirchandani, P., Francis, R. (eds.) Discrete Location Theory, pp. 119–171. Wiley, New York (1990)

    Google Scholar 

  5. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. J. Algorithms31(1), 228–248 (1999)

    Article MathSciNet  Google Scholar 

  6. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM (JACM)48(2), 274–296 (2001)

    Article MathSciNet  Google Scholar 

  7. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 229–242. Springer, Heidelberg (2002).https://doi.org/10.1007/3-540-45753-4_20

    Chapter MATH  Google Scholar 

  8. Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: two metric network design. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 624–630. IEEE (2000)

    Google Scholar 

  9. Shmoys, D.B., Aardal, K.I.: Approximation algorithms for facility location problems, vol. 1997. Utrecht University: Information and Computing Sciences (1997)

    Google Scholar 

  10. Van Roy, T.J., Erlenkotter, D.: A dual-based procedure for dynamic facility location. Manag. Sci.28(10), 1091–1105 (1982)

    Article  Google Scholar 

  11. Wang, Z., Du, D., Xu, D.: A primal-dual approximation algorithm for the k-level stochastic facility location problem. In: Chen, B. (ed.) AAIM 2010. LNCS, pp. 253–260. Springer, Heidelberg (2010).https://doi.org/10.1007/978-3-642-14355-7_26

    Chapter  Google Scholar 

  12. Xu, D., Du, D.: The k-level facility location game. Oper. Res. Lett.34(4), 421–426 (2006)

    Article MathSciNet  Google Scholar 

  13. Ye, Y., Zhang, J.: An approximation algorithm for the dynamic facility location problem. In: Cheng, M.X., Li, Y., Du, D.Z. (eds.) Combinatorial Optimization in Communication Networks, vol. 18, pp. 623–637. Springer, Boston (2006).https://doi.org/10.1007/0-387-29026-5_22

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, Jiangsu, People’s Republic of China

    Limin Wang

  2. College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People’s Republic of China

    Zhao Zhang

  3. Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing, 100124, People’s Republic of China

    Dachuan Xu

  4. School of Mathematical Science and Institute of Mathematics, Nanjing Normal University, Nanjing, 210023, Jiangsu, People’s Republic of China

    Xiaoyan Zhang

Authors
  1. Limin Wang
  2. Zhao Zhang
  3. Dachuan Xu
  4. Xiaoyan Zhang

Corresponding author

Correspondence toXiaoyan Zhang.

Editor information

Editors and Affiliations

  1. The University of Texas at Dallas, Richardson, TX, USA

    Ding-Zhu Du

  2. Hefei University of Technology, Hefei, China

    Lian Li

  3. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

    Xiaoming Sun

  4. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

    Jialin Zhang

Rights and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Zhang, Z., Xu, D., Zhang, X. (2019). An Approximation Algorithm for the Dynamick-level Facility Location Problem. In: Du, DZ., Li, L., Sun, X., Zhang, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2019. Lecture Notes in Computer Science(), vol 11640. Springer, Cham. https://doi.org/10.1007/978-3-030-27195-4_26

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp