Part of the book series:Lecture Notes in Computer Science ((LNBI,volume 11490))
Included in the following conference series:
944Accesses
Abstract
Since the genome of the nucleus is a complicated three-dimensional spatial structure but not a single linear structure, biologists consider that 3D structure of plant chromatin is highly correlated with the function of the genome, which can be used to study the regulation mechanisms of genes and their evolutionary process. Because plants are more prone to chromosome structural variation and the 3D structure of plant chromatin are highly correlated with the function of the genome, it is important to investigate the impact of chromosome structural variation on gene expression by analyzing 3D structure. Here, we will briefly review the current bioinformatics tools for 3D plant genome study, which covers Hi-C data processing tools, then are the tools for A and B compartments identification, topologically associated domains (TAD) identification, identification of significant interactions and visualization. And then, we could provide the useful information for the related 3D plant genomics research scientists to select the appropriate tools according to their study. Finally, we discuss how to develop the future 3D genomic plant bioinformatics tools to keep up with the pace of scientific research development.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Erez, L.A., Berkum, N.L., Van, L.W., Maxim, I., Tobias, R., Agnes, T.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009)
Dixon, J.R., Siddarth, S., Feng, Y., Audrey, K., Yan, L., Yin, S.: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature485(7398), 376 (2012)
Job, D., Marti-Renom, M.A., Mirny, L.A.: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet.14(6), 390–403 (2013)
Doğan, E.S., Chang, L.: Three-dimensional chromatin packing and positioning of plant genomes. Nature Plants (2018)
Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T.: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell159(7), 1665–1680 (2014)
Xianglin, Z., Huan, F., Xiaowo, W.: The advancement of analysis methods of chromosome conformation capture data. Prog. Biochem. Biophys.45, 1093–1105 (2018)
Liu, B., Wendel, J.F.: Epigenetic phenomena and the evolution of plant allopolyploids. Mol. Phylogenetics Evol.29(3), 365–379 (2003)
Kellogg, E.A., Bennetzen, J.L.: The evolution of nuclear genome structure in seed plants. Am. J. Bot.91(10), 1709–1725 (2004)
Spielmann, M., Lupiáñez, D. G., Mundlos, S.: Structural variation in the 3D genome. Nat. Rev. Genet.19(7), 453–467 (2018)
Mishra, A., Hawkins, R.D.: Three-dimensional genome architecture and emerging technologies: looping in disease. Genome Med.9(1), 87 (2017)
Li, X., Wu, L., Wang, J., Sun, J., Xia, X., Geng, X.: Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biol.16(1), 102 (2018)
Wang, M., Wang, P., Lin, M., Ye, Z., Li, G., Tu, L.: Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants4(2), 90 (2018)
Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C.: De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science356(6333), 92 (2017)
Wu, P., Li, T., Li, R., Jia, L., Zhu, P., Liu, Y.: 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat. Commun.8(1), 1937 (2017)
Liu, C., Cheng, Y.-J., Wang, J.-W., Weigel, D.: Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat. Plants3(9), 742 (2017)
Belton, J.M., Mccord, R.P., Gibcus, J.H., Naumova, N., Zhan, Y., Dekker, J.: Hi–C: a comprehensive technique to capture the conformation of genomes. Methods58(3), 268–276 (2012)
Imakaev, M., Fudenberg, G., Mccord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R.: Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods9(10), 999 (2012)
Grob, S., Grossniklaus, U.: Chromosome conformation capture-based studies reveal novel features of plant nuclear architecture. Curr. Opin. Plant Biol.36, 149–157 (2017)
Rodriguezgranados, N.Y., Ramirezprado, J.S., Veluchamy, A., Latrasse, D., Raynaud, C., Crespi, M.: Put your 3D glasses on: plant chromatin is on show. J. Exp. Bot.67(11), 89 (2016)
Wang, C., Liu, C., Roqueiro, D., Grimm, D., Schwab, R., Becker, C.: Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res.25(2), 246–256 (2015)
Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S.O., Wicker, T.: A chromosome conformation capture ordered sequence of the barley genome. Nature544(7651), 427 (2017)
van Berkum, N.L., Lieberman-Aiden, E., Williams, L., Imakaev, M., Gnirke, A., Mirny, L.A.: Hi-C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp. Jove39(39), 292–296 (2010)
FastQC.http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 21 Mar 2019
Bolger, A.M., Marc, L., Bjoern, U.: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30(15), 2114–2120 (2014)
Zhang, Y., An, L., Xu, J., Zhang, B., Zheng, W.J., Hu, M.: Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nat. Commun.9(1), 750 (2018)
Li, A., Yin, X., Xu, B., Wang, D., Han, J., Yi, W.: Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy. Nat. Commun.9(1), 3265 (2018)
Wang, M., Tu, L., Yuan, D., Zhu, D., Shen, C., Li, J.: Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat. Genet.51, 224 (2018)
Nicolas, S., Nelle, V., Lajoie, B.R., Eric, V., Chen, C.J., Jean-Philippe, V.: HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol.16(1), 259 (2015)
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P.: Simple combinations of lineage-determining transcription factors prime -regulatory elements required for macrophage and B cell identities. Mol. Cell38(4), 576–589 (2010)
Durand, N., Shamim, M., Machol, I., Rao, S.P., Huntley, M., Lander, E.: Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst.3(1), 95–98 (2016)
Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder, S., Fraser, P.: HiCUP: pipeline for mapping and processing Hi-C data. F1000res4, 1310 (2015)
Schmid, M.W., Grob, S., Grossniklaus, U.: HiCdat: a fast and easy-to-use Hi-C data analysis tool. BMC Bioinform.16(1), 1–6 (2015)
Serra, F., Baù, D., Goodstadt, M., Castillo, D., Filion, G., Marti-Renom, M.A.: Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol.13(7), e1005665 (2017)
Dong, P., Tu, X., Chu, P.-Y., Lü, P., Zhu, N., Grierson, D.: 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant10(12), 1497–1509 (2017)
Zhang, L., Zheng, C.Q., Li, T., Xing, L., Zeng, H., Li, T.T.: Building up a robust risk mathematical platform to predict colorectal cancer. Complexity, 14 (2017)
Yu, M., Ren, B.: The three-dimensional organization of mammalian genomes. Annu. Rev. Cell Dev. Biol.33(1), 265–289 (2017)
Servant, N., Lajoie, B.R., Nora, E.P., Giorgetti, L., Chen, C.J., Heard, E.: HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics28(21), 2843–2844 (2012)
Zhang, L., Xiao, M., Zhou, J., Yu, J.: Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics34(21), 3624–3630 (2018)
Franke, M., Ibrahim, D.M., Andrey, G., Schwarzer, W., Heinrich, V., Schöpflin, R.: Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature538(7624), 265–269 (2016)
Weinreb, C., Raphael, B.J.: Identification of hierarchical chromatin domains. Bioinformatics32(11), 1601 (2015)
Zhang, L., Liu, Y., Wang, M., Wu, Z., Li, N., Zhang, J.: EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J. Mol. Cell Biol.9(6), 477–488 (2017)
Zhang, L., Qiao, M., Gao, H., Hu, B., Tan, H., Zhou, X.: Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale8(31), 14877–14887 (2016)
Zhang, L., Zhang, S.: Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: “Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang et al. Phys. Life Rev.20, 140–142 (2017)
Shin, H., Shi, Y., Dai, C., Tjong, H., Gong, K., Alber, F.: TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res.44(7), e70–e70 (2016)
Celine, L.L., Delattre, M., Mary-Huard, T., Robin, S.: Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics30(17), 386–392 (2014)
Emily, C., Qian, B., Rachel, P.M., Lajoie, B.R., Wheeler, B.S., Ralston, E.J.: Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature523(7559), 240 (2015)
Wang, X.T., Cui, W., Peng, C.: HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions. Nucleic Acids Res.45(19), e163 (2017)
Mifsud, B., Martincorena, I., Darbo, E., Sugar, R., Schoenfelder, S., Fraser, P.: GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. PLoS ONE12(4), e0174744 (2017)
Forcato, M., Nicoletti, C., Pal, K., Livi, C.M., Ferrari, F., Bicciato, S.: Comparison of computational methods for Hi-C data analysis. Nat. Methods14(7), 679 (2017)
Carty, M., Zamparo, L., Sahin, M., González, A., Pelossof, R., Elemento, O.: An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data. Nat. Commun.8, 15454 (2017)
Liu, C., Weigel, D.: Chromatin in 3D: progress and prospects for plants. Genome Biol.16(1), 170 (2015)
Liu, C., Wang, C., Wang, G., Becker, C., Zaidem, M., Weigel, D.: Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res.26(8), 1057 (2016)
Ay, F., Bailey, T.L., Noble, W.S.: Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res.24(6), 999 (2014)
Lun, A.T.L., Smyth, G.K.: diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinform.16, 1258 (2015)
Hwang, Y.C., Lin, C.F., Valladares, O., Malamon, J., Kuksa, P.P., Zheng, Q.: HIPPIE: a high-throughput identification pipeline for promoter interacting enhancer elements. Bioinformatics31(8), 1290–1292 (2015)
Durand, N., Robinson, J., Shamim, M., Machol, I., Mesirov, J., Lander, E.: Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst.3(1), 99–101 (2016)
Akdemir, K.C., Chin, L.: HiCPlotter integrates genomic data with interaction matrices. Genome Biol.16(1), 198 (2015)
Acknowledgements
This work was supported by the National Natural Science Foundation of China [61372138], the National Science and Technology Major Project [2018ZX10201002] and the Chinese Chongqing Distinguish Youth Funding [cstc2014jcyjjq40003].
Author information
Authors and Affiliations
College of Computer Science, Sichuan University, Chengdu, 610065, China
Xiangyu Yang, Jingtian Zhao & Le Zhang
College of Life Sciences, Sichuan University, Chengdu, 610065, China
Zhenghao Li & Tao Ma
School of Computer and Information Science, Southwest University, Beibei District, Chongqing, 400715, China
Pengchao Li
- Xiangyu Yang
You can also search for this author inPubMed Google Scholar
- Zhenghao Li
You can also search for this author inPubMed Google Scholar
- Jingtian Zhao
You can also search for this author inPubMed Google Scholar
- Tao Ma
You can also search for this author inPubMed Google Scholar
- Pengchao Li
You can also search for this author inPubMed Google Scholar
- Le Zhang
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toLe Zhang.
Editor information
Editors and Affiliations
Georgia State University, Atlanta, GA, USA
Zhipeng Cai
Georgia State University, Atlanta, GA, USA
Pavel Skums
Central South University, Changsha, China
Min Li
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, X., Li, Z., Zhao, J., Ma, T., Li, P., Zhang, L. (2019). The Review of Bioinformatics Tool for 3D Plant Genomics Research. In: Cai, Z., Skums, P., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2019. Lecture Notes in Computer Science(), vol 11490. Springer, Cham. https://doi.org/10.1007/978-3-030-20242-2_2
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-20241-5
Online ISBN:978-3-030-20242-2
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative