Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Constructing TI-Friendly Substitution Boxes Using Shift-Invariant Permutations

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 11405))

Included in the following conference series:

Abstract

The threat posed by side channels requires ciphers that can be efficiently protected in both software and hardware against such attacks. In this paper, we proposed a novel Sbox construction based on iterations of shift-invariant quadratic permutations and linear diffusions. Owing to the selected quadratic permutations, all of our Sboxes enable uniform 3-share threshold implementations, which provide first order SCA protections without any fresh randomness. More importantly, because of the “shift-invariant” property, there are ample implementation trade-offs available, in software as well as hardware. We provide implementation results (software and hardware) for a four-bit and an eight-bit Sbox, which confirm that our constructions are competitive and can be easily adapted to various platforms as claimed. We have successfully verified their resistance to first order attacks based on real acquisitions. Because there are very few studies focusing on software-based threshold implementations, our software implementations might be of independent interest in this regard.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Notes

  1. 1.

    Technically, glitches still exist within one instruction. However, the threat that glitches may bring—mixing between different data shares—does not usually show up.

  2. 2.

    Note that here we only need\(x_0\) to appear, rather than appearing as a linear term [15].

  3. 3.

    Unlike its hardware counterpart, “coupling” effect [28] and “voltage fluctuation” are not the only concerns for the software TI. An AND instruction may not have the same leakage as 32 1-bit-AND gates, unless all the other combinational logic cells in the ALU are actually “silent”.

  4. 4.

    Note that this does not mean each Sbox can be computed only 109 cycles: if there is only one Sbox to compute, it will still take 870 cycles, as most of the bit-width will be wasted.

  5. 5.

    Depending on the specific implementation, such “extra logic” can actually predominates the overall area cost. To this end, we would like the stress that our serial implementation is only worthwhile if it has a significant advantage in area cost.

References

  1. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006).https://doi.org/10.1007/11935308_38

    Chapter MATH  Google Scholar 

  2. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptol.24(2), 292–321 (2011)

    Article MathSciNet  Google Scholar 

  3. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of all 3\(\,\times \,\)3 and 4\(\,\times \,\)4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012).https://doi.org/10.1007/978-3-642-33027-8_5

    Chapter MATH  Google Scholar 

  4. De Meyer, L., Bilgin, B.: Classification of balanced quadratic functions. IACR Cryptology ePrint Archive, Report 2018/113 (2018)

    Google Scholar 

  5. Bozilov, D., Bilgin, B., Sahin, H.A.: A note on 5-bit quadratic permutations’ classification. IACR Trans. Symmetric Cryptol.2017(1), 398–404 (2017)

    Google Scholar 

  6. Beyne, T., Bilgin, B.: Uniform first-order threshold implementations. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 79–98. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-69453-5_5

    Chapter  Google Scholar 

  7. De Meyer, L., Moradi, A., Wegener, F.: Spin me right round rotational symmetry for FPGA-specific AES. IACR Trans. Cryptogr. Hardw. Embed. Syst.2018(3), 596–626 (2018)

    Google Scholar 

  8. Daemen, J.: Changing of the guards: a simple and efficient method for achieving uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 137–153. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-66787-4_7

    Chapter  Google Scholar 

  9. Boss, E., Grosso, V., Güneysu, T., Leander, G., Moradi, A., Schneider, T.: Strong 8-bit Sboxes with efficient masking in hardware extended version. J. Cryptogr. Eng.7(2), 149–165 (2017)

    Article  Google Scholar 

  10. Meyer, L.D., Varici, K.: More constructions for strong 8-bit S-boxes with efficient masking in hardware. In: Proceedings of the 38th Symposium on Information Theory in the Benelux, Delft, NE, p. 11. Werkgemeenschap voor Informatie- en Communicatietheorie (2017)

    Google Scholar 

  11. Sasdrich, P., Bock, R., Moradi, A.: Threshold implementation in software. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 227–244. Springer, Cham (2018).https://doi.org/10.1007/978-3-319-89641-0_13

    Chapter  Google Scholar 

  12. Jungk, B., Petri, R., Stottinger, M.: Efficient side-channel protections of ARX ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst.2018(3), 627–653 (2018)

    Google Scholar 

  13. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and masking at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 599–619. Springer, Heidelberg (2015).https://doi.org/10.1007/978-3-662-48324-4_30

    Chapter  Google Scholar 

  14. de Groot, W., Papagiannopoulos, K., de La Piedra, A., Schneider, E., Batina, L.: Bitsliced masking and ARM: friends or foes? In: Bogdanov, A. (ed.) LightSec 2016. LNCS, vol. 10098, pp. 91–109. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-55714-4_7

    Chapter  Google Scholar 

  15. Daemen, J.: Cipher and hash function design, strategies based on linear and differential cryptanalysis. Ph.D. thesis, K. U. Leuven (1995).http://jda.noekeon.org/

  16. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer, Heidelberg (2013).https://doi.org/10.1007/978-3-642-38348-9_19

    Chapter  Google Scholar 

  17. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold implementations for 4-bit S-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 99–113. Springer, Heidelberg (2013).https://doi.org/10.1007/978-3-642-40026-1_7

    Chapter  Google Scholar 

  18. Gupta, N., Jati, A., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold implementations of GIFT: a trade-off analysis. IACR Cryptology ePrint Archive, Report 2017/1040 (2017)

    Google Scholar 

  19. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994).https://doi.org/10.1007/3-540-48285-7_6

    Chapter  Google Scholar 

  20. Božilov, D., Bilgin, B., Sahin, H.: A note on 5-bit quadratic permutations’ classification. IACR Trans. Symmetric Cryptol.2017(1), 398–404 (2017)

    Google Scholar 

  21. Meyer, L.D., Bilgin, B.: Classification of balanced quadratic functions. Cryptology ePrint Archive, Report 2018/113 (2018).https://eprint.iacr.org/2018/113

  22. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007).https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  23. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based S-boxes. Cryptogr. Commun.11, 41–62 (2018)

    Article MathSciNet  Google Scholar 

  24. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010).https://doi.org/10.1007/978-3-642-13858-4_19

    Chapter  Google Scholar 

  25. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg (2007).https://doi.org/10.1007/978-3-540-73074-3_13

    Chapter MATH  Google Scholar 

  26. ARM: Arm and thumb-2 instruction set.http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf

  27. ARM: Thumb 16-bit instruction set.http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf

  28. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.: Does coupling affect the security of masked implementations? In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-64647-3_1

    Chapter  Google Scholar 

  29. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–597. Springer, Cham (2017).https://doi.org/10.1007/978-3-319-56620-7_20

    Chapter MATH  Google Scholar 

  30. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015).https://doi.org/10.1007/978-3-319-16763-3_5

    Chapter  Google Scholar 

  31. Wegener, F., Moradi, A.: A first-order SCA resistant AES without fresh randomness. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 245–262. Springer, Cham (2018).https://doi.org/10.1007/978-3-319-89641-0_14

    Chapter  Google Scholar 

  32. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold implementations illustrated on AES. IEEE Trans. CAD Integr. Circuits Syst.34(7), 1188–1200 (2015)

    Article  Google Scholar 

  33. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel resistance validation. Technical report, CRI (2011)

    Google Scholar 

  34. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F.-X., Fei, Y.: Towards sound and optimal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS 2017. LNCS, vol. 10728, pp. 105–122. Springer, Cham (2018).https://doi.org/10.1007/978-3-319-75208-2_7

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank all anonymous reviewers for improving the quality of this paper as well as providing insights from some other perspectives. This work has been funded in part by EPSRC under grant agreement EP/N011635/1 (LADA).

Author information

Authors and Affiliations

  1. University of Bristol, Bristol, UK

    Si Gao, Arnab Roy & Elisabeth Oswald

Authors
  1. Si Gao

    You can also search for this author inPubMed Google Scholar

  2. Arnab Roy

    You can also search for this author inPubMed Google Scholar

  3. Elisabeth Oswald

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSi Gao.

Editor information

Editors and Affiliations

  1. Mitsubishi Electric Corporation, Kamakura, Japan

    Mitsuru Matsui

Rights and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, S., Roy, A., Oswald, E. (2019). Constructing TI-Friendly Substitution Boxes Using Shift-Invariant Permutations. In: Matsui, M. (eds) Topics in Cryptology – CT-RSA 2019. CT-RSA 2019. Lecture Notes in Computer Science(), vol 11405. Springer, Cham. https://doi.org/10.1007/978-3-030-12612-4_22

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp