Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Selection of Models of DNA Evolution with jModelTest

  • Protocol
  • First Online:

Part of the book series:Methods in Molecular Biology ((MIMB,volume 537))

Abstract

jModelTest is a bioinformatic tool for choosing among different models of nucleotide substitution. The program implements five different model selection strategies, including hierarchical and dynamical likelihood ratio tests (hLRT and dLRT), Akaike and Bayesian information criteria (AIC and BIC), and a performance-based decision theory method (DT). The output includes estimates of model selection uncertainty, parameter importances, and model-averaged parameter estimates, including model-averaged phylogenies. jModelTest is a Java program that runs under Mac OSX, Windows, and Unix systems with a Java Run Environment installed, and it can be freely downloaded fromhttp://darwin.uvigo.es.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
JPY 5480
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Yang, Z., Goldman, N., and Friday, A. (1995) Maximum likelihood trees from DNA sequences: a peculiar statistical estimation problem.Syst Biol44, 384–99.

    Google Scholar 

  2. Tamura, K. (1994) Model selection in the estimation of the number of nucleotide substitutions.Mol Biol Evol11, 154–57.

    PubMed CAS  Google Scholar 

  3. Zhang, J. (1999) Performance of likelihood ratio tests of evolutionary hypotheses under inadequate substitution models.Mol Biol Evol16, 868–75.

    PubMed CAS  Google Scholar 

  4. Lemmon, A. R., and Moriarty, E. C. (2004) The importance of proper model assumption in Bayesian phylogenetics.Syst Biol53, 265–77.

    Article PubMed  Google Scholar 

  5. Buckley, T. R., and Cunningham, C. W. (2002) The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support.Mol Biol Evol19, 394–405.

    Article PubMed CAS  Google Scholar 

  6. Sullivan, J., and Swofford, D. L. (1997) Are guinea pigs rodents? The importance of adequate models in molecular phylogenies.J Mamm Evol4, 77–86.

    Article  Google Scholar 

  7. Kelsey, C. R., Crandall, K. A., and Voevodin, A. F. (1999) Different models, different trees: the geographic origin of PTLV-I.Mol Phylogenet Evol13, 336–47.

    Article PubMed CAS  Google Scholar 

  8. Pupko, T., Huchon, D., Cao, Y., Okada, N., and Hasegawa, M. (2002) Combining multiple data sets in a likelihood analysis: which models are the best?Mol Biol Evol19, 2294–307.

    Article PubMed CAS  Google Scholar 

  9. Posada, D., and Buckley, T. R. (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests.Syst Biol53, 793–808.

    Article PubMed  Google Scholar 

  10. Sullivan, J., and Joyce, P. (2005) Model selection in phylogenetics.Annu Rev Ecol Evol. Syst.36, 445–66.

    Article  Google Scholar 

  11. Alfaro, M. E., and Huelsenbeck, J. P. (2006) Comparative performance of Bayesian and AIC-based measures of phylogenetic model uncertainty.Syst Biol55, 89–96.

    Article PubMed  Google Scholar 

  12. Ripplinger, J., and Sullivan, J. (2008) Does choice in model selection affect maximum likelihood analysis?Syst Biol57, 76–85.

    Article PubMed  Google Scholar 

  13. Goldman, N. (1993) Statistical tests of models of DNA substitution.J Mol. Evol36, 182–98.

    Article PubMed CAS  Google Scholar 

  14. Kendall, M., and Stuart, A. (1979) The Advanced Theory of Statistics, Charles Griffin, London.

    Google Scholar 

  15. Posada, D., and Crandall, K. A. (2001) Selecting the best-fit model of nucleotide substitution.Syst Biol50, 580–601.

    Article PubMed CAS  Google Scholar 

  16. Akaike, H. (1974) A new look at the statistical model identification.IEEE Trans. Aut. Control19, 716–23.

    Article  Google Scholar 

  17. Kullback, S., and Leibler, R. A. (1951) On information and sufficiency.Ann Math Stat22, 79–86.

    Article  Google Scholar 

  18. Sugiura, N. (1978) Further analysis of the data by Akaike's information criterion and the finite corrections.Comm Statist Theor MethA7, 13–26.

    Article  Google Scholar 

  19. Hurvich, C. M., and Tsai, C.-L. (1989) Regression and time series model selection in small samples.Biometrika76, 297–307.

    Article  Google Scholar 

  20. Schwarz, G. (1978) Estimating the dimension of a model.Ann Stat6, 461–64.

    Article  Google Scholar 

  21. Minin, V., Abdo, Z., Joyce, P., and Sullivan, J. (2003) Performance-based selection of likelihood models for phylogeny estimation.Syst Biol52, 674–83.

    Article PubMed  Google Scholar 

  22. Abdo, Z., Minin, V. N., Joyce, P., and Sullivan, J. (2005) Accounting for uncertainty in the tree topology has little effect on the decision-theoretic approach to model selection in phylogeny estimation.Mol Biol Evol22, 691–703.

    Article PubMed CAS  Google Scholar 

  23. Burnham, K. P., and Anderson, D. R. (1998)Model Selection and Inference: A Practical Information-Theoretic Approach, Springer-Verlag, New York, NY.

    Google Scholar 

  24. Burnham, K. P., and Anderson, D. R. (2003)Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer-Verlag, New York, NY.

    Google Scholar 

  25. Posada, D. (2003)Current Protocols in Bioinformatics (Baxevanis, A. D., Davison, D. B., Page, R. D. M., Petsko, G. A., Stein, L. D., and Stormo, G. D., Eds.), pp. 6.5.1–6.5.14, John Wiley & Sons, Inc., New York

    Google Scholar 

  26. Madigan, D. M., and Raftery, A. E. (1994) Model selection and accounting for model uncertainty in graphical models using Occam's Window.J Amer Stat Assoc89, 1335–46.

    Article  Google Scholar 

  27. Wasserman, L. (2000) Bayesian model selection and model averaging.J Math Psychol44, 92–107.

    Article PubMed  Google Scholar 

  28. Hoeting, J. A., Madigan, D., and Raftery, A. E. (1999) Bayesian model averaging: a tutorial.Stat Sci14, 382–417.

    Article  Google Scholar 

  29. Raftery, A. E. (1996)Markov chain Monte Carlo in Practice (Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., Eds.), pp. 163–87, Chapman & Hall, London, New York.

    Google Scholar 

  30. Gilbert, D. (2007) ReadSeq, Indiana University, Bloomington.

    Google Scholar 

  31. Guindon, S., and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Syst Biol52, 696–704.

    Article PubMed  Google Scholar 

  32. Felsenstein, J. (2005) Phylip, Department of Genome Sciences, University of Washington, Seattle.

    Google Scholar 

  33. Gascuel, O. (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.Mol Biol Evol14, 685–95.

    PubMed CAS  Google Scholar 

  34. Swofford, D. L. (2000) PAUP*, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  35. Bollback, J. P. (2002) Bayesian model adequacy and choice in phylogenetics.Mol Biol Evol19, 1171–80.

    Article PubMed CAS  Google Scholar 

  36. Ohta, T. (1992) Theoretical study of near neutrality. II. Effect of subdivided population structure with local extinction and recolonization.Genetics130, 917–23.

    Google Scholar 

  37. Goldman, N., and Whelan, S. (2000) Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics.Mol Biol Evol17, 975–78.

    PubMed CAS  Google Scholar 

  38. Huelsenbeck, J. P., Larget, B., and Alfaro, M. E. (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo.Mol Biol Evol21, 1123–33.

    Article PubMed CAS  Google Scholar 

  39. Jukes, T. H., and Cantor, C. R. (1969)Mammalian Protein Metabolism (Munro, H. M., Ed.), pp. 21–132, Academic Press, New York, NY.

    Google Scholar 

  40. Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach.J Mol Evol17, 368–76.

    Article PubMed CAS  Google Scholar 

  41. Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.J Mol Evol16, 111–20.

    Article PubMed CAS  Google Scholar 

  42. Hasegawa, M., Kishino, K., and Yano, T. (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA.J Mol Evol22, 160–74.

    Article PubMed CAS  Google Scholar 

  43. Tamura, K., and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Mol Biol Evol10, 512–26.

    PubMed CAS  Google Scholar 

  44. Kimura, M. (1981) Estimation of evolutionary distances between homologous nucleotide sequences.Proc Natl Acad Sci USA78, 454–58.

    Article PubMed CAS  Google Scholar 

  45. Zharkikh, A. (1994) Estimation of evolutionary distances between nucleotide sequences.J Mol Evol39, 315–29.

    Article PubMed CAS  Google Scholar 

  46. Tavaré, S. (1986)Some Mathematical Questions in Biology – DNA Sequence Analysis (Miura, R. M., Ed.), Vol. 17, pp. 57–86, American Mathematical Society, Providence, RI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Genética, Bioquímica e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain

    David Posada

Authors
  1. David Posada

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. Bioquímica, Genética e Inmunología, Universidad de Vigo, Vigo, 36310, Spain

    David Posada

Rights and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Posada, D. (2009). Selection of Models of DNA Evolution with jModelTest . In: Posada, D. (eds) Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology, vol 537. Humana Press. https://doi.org/10.1007/978-1-59745-251-9_5

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
JPY 5480
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp