Part of the book series:Methods in Molecular Biology ((MIMB,volume 537))
5381Accesses
173Citations
Abstract
jModelTest is a bioinformatic tool for choosing among different models of nucleotide substitution. The program implements five different model selection strategies, including hierarchical and dynamical likelihood ratio tests (hLRT and dLRT), Akaike and Bayesian information criteria (AIC and BIC), and a performance-based decision theory method (DT). The output includes estimates of model selection uncertainty, parameter importances, and model-averaged parameter estimates, including model-averaged phylogenies. jModelTest is a Java program that runs under Mac OSX, Windows, and Unix systems with a Java Run Environment installed, and it can be freely downloaded fromhttp://darwin.uvigo.es.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Protocol
- JPY 5480
- Price includes VAT (Japan)
- eBook
- JPY 11439
- Price includes VAT (Japan)
- Softcover Book
- JPY 14299
- Price includes VAT (Japan)
- Hardcover Book
- JPY 14299
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yang, Z., Goldman, N., and Friday, A. (1995) Maximum likelihood trees from DNA sequences: a peculiar statistical estimation problem.Syst Biol44, 384–99.
Tamura, K. (1994) Model selection in the estimation of the number of nucleotide substitutions.Mol Biol Evol11, 154–57.
Zhang, J. (1999) Performance of likelihood ratio tests of evolutionary hypotheses under inadequate substitution models.Mol Biol Evol16, 868–75.
Lemmon, A. R., and Moriarty, E. C. (2004) The importance of proper model assumption in Bayesian phylogenetics.Syst Biol53, 265–77.
Buckley, T. R., and Cunningham, C. W. (2002) The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support.Mol Biol Evol19, 394–405.
Sullivan, J., and Swofford, D. L. (1997) Are guinea pigs rodents? The importance of adequate models in molecular phylogenies.J Mamm Evol4, 77–86.
Kelsey, C. R., Crandall, K. A., and Voevodin, A. F. (1999) Different models, different trees: the geographic origin of PTLV-I.Mol Phylogenet Evol13, 336–47.
Pupko, T., Huchon, D., Cao, Y., Okada, N., and Hasegawa, M. (2002) Combining multiple data sets in a likelihood analysis: which models are the best?Mol Biol Evol19, 2294–307.
Posada, D., and Buckley, T. R. (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests.Syst Biol53, 793–808.
Sullivan, J., and Joyce, P. (2005) Model selection in phylogenetics.Annu Rev Ecol Evol. Syst.36, 445–66.
Alfaro, M. E., and Huelsenbeck, J. P. (2006) Comparative performance of Bayesian and AIC-based measures of phylogenetic model uncertainty.Syst Biol55, 89–96.
Ripplinger, J., and Sullivan, J. (2008) Does choice in model selection affect maximum likelihood analysis?Syst Biol57, 76–85.
Goldman, N. (1993) Statistical tests of models of DNA substitution.J Mol. Evol36, 182–98.
Kendall, M., and Stuart, A. (1979) The Advanced Theory of Statistics, Charles Griffin, London.
Posada, D., and Crandall, K. A. (2001) Selecting the best-fit model of nucleotide substitution.Syst Biol50, 580–601.
Akaike, H. (1974) A new look at the statistical model identification.IEEE Trans. Aut. Control19, 716–23.
Kullback, S., and Leibler, R. A. (1951) On information and sufficiency.Ann Math Stat22, 79–86.
Sugiura, N. (1978) Further analysis of the data by Akaike's information criterion and the finite corrections.Comm Statist Theor MethA7, 13–26.
Hurvich, C. M., and Tsai, C.-L. (1989) Regression and time series model selection in small samples.Biometrika76, 297–307.
Schwarz, G. (1978) Estimating the dimension of a model.Ann Stat6, 461–64.
Minin, V., Abdo, Z., Joyce, P., and Sullivan, J. (2003) Performance-based selection of likelihood models for phylogeny estimation.Syst Biol52, 674–83.
Abdo, Z., Minin, V. N., Joyce, P., and Sullivan, J. (2005) Accounting for uncertainty in the tree topology has little effect on the decision-theoretic approach to model selection in phylogeny estimation.Mol Biol Evol22, 691–703.
Burnham, K. P., and Anderson, D. R. (1998)Model Selection and Inference: A Practical Information-Theoretic Approach, Springer-Verlag, New York, NY.
Burnham, K. P., and Anderson, D. R. (2003)Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer-Verlag, New York, NY.
Posada, D. (2003)Current Protocols in Bioinformatics (Baxevanis, A. D., Davison, D. B., Page, R. D. M., Petsko, G. A., Stein, L. D., and Stormo, G. D., Eds.), pp. 6.5.1–6.5.14, John Wiley & Sons, Inc., New York
Madigan, D. M., and Raftery, A. E. (1994) Model selection and accounting for model uncertainty in graphical models using Occam's Window.J Amer Stat Assoc89, 1335–46.
Wasserman, L. (2000) Bayesian model selection and model averaging.J Math Psychol44, 92–107.
Hoeting, J. A., Madigan, D., and Raftery, A. E. (1999) Bayesian model averaging: a tutorial.Stat Sci14, 382–417.
Raftery, A. E. (1996)Markov chain Monte Carlo in Practice (Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., Eds.), pp. 163–87, Chapman & Hall, London, New York.
Gilbert, D. (2007) ReadSeq, Indiana University, Bloomington.
Guindon, S., and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Syst Biol52, 696–704.
Felsenstein, J. (2005) Phylip, Department of Genome Sciences, University of Washington, Seattle.
Gascuel, O. (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.Mol Biol Evol14, 685–95.
Swofford, D. L. (2000) PAUP*, Sinauer Associates, Sunderland, Massachusetts.
Bollback, J. P. (2002) Bayesian model adequacy and choice in phylogenetics.Mol Biol Evol19, 1171–80.
Ohta, T. (1992) Theoretical study of near neutrality. II. Effect of subdivided population structure with local extinction and recolonization.Genetics130, 917–23.
Goldman, N., and Whelan, S. (2000) Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics.Mol Biol Evol17, 975–78.
Huelsenbeck, J. P., Larget, B., and Alfaro, M. E. (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo.Mol Biol Evol21, 1123–33.
Jukes, T. H., and Cantor, C. R. (1969)Mammalian Protein Metabolism (Munro, H. M., Ed.), pp. 21–132, Academic Press, New York, NY.
Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach.J Mol Evol17, 368–76.
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.J Mol Evol16, 111–20.
Hasegawa, M., Kishino, K., and Yano, T. (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA.J Mol Evol22, 160–74.
Tamura, K., and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Mol Biol Evol10, 512–26.
Kimura, M. (1981) Estimation of evolutionary distances between homologous nucleotide sequences.Proc Natl Acad Sci USA78, 454–58.
Zharkikh, A. (1994) Estimation of evolutionary distances between nucleotide sequences.J Mol Evol39, 315–29.
Tavaré, S. (1986)Some Mathematical Questions in Biology – DNA Sequence Analysis (Miura, R. M., Ed.), Vol. 17, pp. 57–86, American Mathematical Society, Providence, RI.
Author information
Authors and Affiliations
Departamento de Genética, Bioquímica e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
David Posada
- David Posada
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Dept. Bioquímica, Genética e Inmunología, Universidad de Vigo, Vigo, 36310, Spain
David Posada
Rights and permissions
Copyright information
© 2009 Humana Press, a part of Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Posada, D. (2009). Selection of Models of DNA Evolution with jModelTest . In: Posada, D. (eds) Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology, vol 537. Humana Press. https://doi.org/10.1007/978-1-59745-251-9_5
Download citation
Published:
Publisher Name:Humana Press
Print ISBN:978-1-58829-910-9
Online ISBN:978-1-59745-251-9
eBook Packages:Springer Protocols