235Accesses
Years and Authors of Summarized Original Work
1995; Feng, Cohen, Eades
Problem Definition
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 285999
- Price includes VAT (Japan)
- Hardcover Book
- JPY 285999
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
Angelini P, Frati F, Kaufmann M (2011) Straight-line rectangular drawings of clustered graphs. Discret Comput Geom 45(1):88–140
Booth KS, Lueker GS (1976) Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J Comput Syst Sci 13(3):335–379
Chimani M, Di Battista G, Frati F, Klein K (2014) Advances on testing c-planarity of embedded flat clustered graphs. In: Graph drawing (GD ’14), Würzburg, pp 416–427
Cortese PF, Di Battista G, Patrignani M, Pizzonia M (2005) Clustering cycles into cycles of clusters. J Graph Algorithms Appl 9(3):391–413. doi:10.7155/jgaa.00115
Cortese PF, Di Battista G, Frati F, Patrignani M, Pizzonia M (2008) C-planarity of c-connected clustered graphs. J Graph Algorithms Appl 12(2):225–262
Dahlhaus E (1998) A linear time algorithm to recognize clustered graphs and its parallelization. In: Lucchesi CL, Moura AV (eds) Latin American theoretical informatics (LATIN ’98), Campinas. LNCS, vol 1380. Springer, pp 239–248
Di Battista G, Frati F (2009) Efficient c-planarity testing for embedded flat clustered graphs with small faces. J Graph Algorithms Appl 13(3):349–378. Special issue from GD ’07
Di Battista G, Tamassia R (1996) On-line planarity testing. SIAM J Comput 25:956–997
Di Battista G, Tamassia R, Tollis IG (1992) Area requirement and symmetry display of planar upward drawings. Discret Comput Geom 7: 381–401
Feng Q, Cohen RF, Eades P (1995) How to draw a planar clustered graph. In: Du D, Li M (eds) Computing and combinatorics conference (COCOON ’95), Xi’an. LNCS, vol 959. Springer, pp 21–30
Feng Q, Cohen RF, Eades P (1995) Planarity for clustered graphs. In: Spirakis P (ed) European symposium on algorithms (ESA ’95), Corfu. LNCS, vol 979. Springer, pp 213–226
Goodrich MT, Lueker GS, Sun JZ (2006) C-planarity of extrovert clustered graphs. In: Healy P, Nikolov N (eds) International symposium on graph drawing (GD ’05), Limerick. LNCS, vol 3843. Springer, pp 211–222
Gutwenger C, Jünger M, Leipert S, Mutzel P, Percan M, Weiskircher R (2002) Advances in c-planarity testing of clustered graphs. In: Goodrich MT, Kobourov SG (eds) International symposium on graph drawing (GD ’02), Irvine. LNCS, vol 2528. Springer, pp 220–235
Hong SH, Nagamochi H (2010) Convex drawings of hierarchical planar graphs and clustered planar graphs. J Discret Algorithms 8(3): 282–295
Jelínek V, Jelínková E, Kratochvíl J, Lidický B (2009) Clustered planarity: embedded clustered graphs with two-component clusters. In: Tollis IG, Patrignani M (eds) Graph drawing (GD ’08), Heraklion. LNCS, vol 5417, pp 121–132. doi:10.1007/978-3-642-00219-9_13
Jelínková E, Kára J, Kratochvíl J, Pergel M, Suchý O, Vyskocil T (2009) Clustered planarity: small clusters in cycles and Eulerian graphs. J Graph Algorithms Appl 13(3):379–422
Schaefer M (2013) Toward a theory of planarity: Hanani-Tutte and planarity variants. J Graph Algorithms Appl 17(4):367–440
Author information
Authors and Affiliations
School of Information Technologies, The University of Sydney, Sydney, NSW, Australia
Fabrizio Frati
Engineering Department, Roma Tre University, Rome, Italy
Fabrizio Frati
- Fabrizio Frati
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toFabrizio Frati.
Editor information
Editors and Affiliations
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA
Ming-Yang Kao
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this entry
Cite this entry
Frati, F. (2016). Clustered Graph Drawing. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_655
Download citation
Published:
Publisher Name:Springer, New York, NY
Print ISBN:978-1-4939-2863-7
Online ISBN:978-1-4939-2864-4
eBook Packages:Computer ScienceReference Module Computer Science and Engineering
Share this entry
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative