Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Multi-Task BCI for Online Game Control

  • Conference paper

In this paper, we develop a new type of brain-computer interface (BCI) which is able to control a computer game by motor imagery electroencephalogram (EEG). We propose a new framework of feature extractions using common spatial frequency patterns (CSFP) for classification of motor imagery EEG. The aim of our BCI system is to provide an on-line “hit rat” game control with short response time and subject-specific adaptation of system parameters. Our BCI system is able to detect three different motor imagery-related brain patterns (imagination of limb movements: left hand, right hand and both feet) from the ongoing brain activity by using only five EEG channels. The best hit accuracy of the game with fast response time attained by subject 2 is about 73%, which demonstrates that our BCI system has the ability of providing much fast BCI of even 1 s per command.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Birbaumer, N., Ghanayim, N., Hinterberger, T, et al. (1999) A spelling device for paralysed. Nature 398, 297-298.

    Article  Google Scholar 

  2. Pfurtscheller, G., Flotzinger, D., Kalcher, J. (1993) Brain-computer interface: a new communication device for handicapped persons. Journal of Microcomputer Applications 16 (3), 293-299.

    Article  Google Scholar 

  3. Vaughan, T., Wolpaw, J., Donchin, E. (1996) EEG-based communication: prospects and problems. IEEE Trans. on Neural Systems and Rehabilitation (4), 425-430.

    Google Scholar 

  4. Blankertz, B., Curio, G., Muller, K.-R. (2002) Classifying single trial EEG: towards brain computer interfacing. Advances in Neural Information Processing Systems 14, 157-164.

    Google Scholar 

  5. Wolpaw, J., Birbaumer, N., et al. (2000) Brain-computer interface technology: a review of the first international meeting 8 (2), 164-173.

    Google Scholar 

  6. Wolpaw, J.R., Birbaumer, N., et al. (2002) Brain-computer interfaces for communication and control. Clinical Neurophysiology 113, 767-791.

    Article  Google Scholar 

  7. M üller, K.-R., Krauledat, M., Dornhege, G., Curio, G., Blankertz, B. (2007) Machine learning and applications for brain-computer Interfacing, in M.J. Smith, G. Salvendy (Eds.): Human Interface, Part I, HCII 2007, Springer LNCS 4557, pp. 705-714.

    Google Scholar 

  8. Pfurtscheller, G., Miiller-Putz, G., Graimann, B., Scherer, R., Schlogl, A., Vidaurre, C., Wriessnegger, S., Neuper, C. (2007) Graz-brain-computer interface: state of research. Toward Brain-Computer Interfacing.

    Google Scholar 

  9. Li, Y., Gao, X., Liu, H., Gao, S. (2004) Classification of single-trial electroencephalogram during finger movement. Biomedical Engineering, IEEE Transactions on 51 (6), 1019-1025.

    Article  Google Scholar 

  10. Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., Yang, F. (2004) BCI competition 2003-data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. Biomedical Engineering, IEEE Transactions on 51 (6), 1081-1086.

    Article  Google Scholar 

  11. Muller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H. (1999) Designing optimal spatial filters for single-trial EEG classification in a movement task. Clinical Neurophysiology 110, 787-798.

    Article  Google Scholar 

  12. Pfurtscheller, G., Brunner, C., Schlogl, A., Lopes da Silva, F. (2006) Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31 (1), 153-159.

    Article  Google Scholar 

  13. Smola, A., Gretton, A., Borgwardt, K., Bedo, J. (2007) Supervised feature selection via dependence estimation. Proceedings of the 24th international conference on Machine learning, 823-830.

    Google Scholar 

  14. Ince, N., Tewfik, A., Arica, S. (2007) Extraction subject-specific motor imagery time- frequency patterns for single trial EEG classification. Computers in Biology and Medicine 37 (4),499-508.

    Article  Google Scholar 

  15. Kalkan, H., Ince, F., Tewfik, A., Yardimci, Y., Pearson, T. (2007) Extraction of optimal timefrequency plane features for classification. Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th, 1-4.

    Google Scholar 

  16. Yang, B., Yan, G., Wu, T., Yan, R. (2007) Subject-based feature extraction using fuzzy wavelet packet in brain-computer interfaces. Signal Processing 87 (7), 1569-1574.

    Article  Google Scholar 

  17. Blankertz, B., Dornhege, G., Krauledat, M., M üller, K.R., Curio, G. (2007) The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37 (2) 539-550.

    Article  Google Scholar 

  18. Krepki, R., Blankertz, B., Curio, G., M üller, K.R. (2007) The Berlin brain-computer interface (BBCI) - towards a new communication channel for online control in gaming applications. Multimedia Tools and Applications 33 (1), 73-90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Lab for Perception Computing, Shanghai Jiao Tong University, China

    Qibin Zhao, Liqing Zhang & Jie Li

Authors
  1. Qibin Zhao

    You can also search for this author inPubMed Google Scholar

  2. Liqing Zhang

    You can also search for this author inPubMed Google Scholar

  3. Jie Li

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Technische Universität Berlin, Berlin, Germany

    Bernd Mahr

  2. Shanghai Jiao Tong University, Shanghai, China

    Sheng Huanye

Rights and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Zhao, Q., Zhang, L., Li, J. (2008). Multi-Task BCI for Online Game Control. In: Mahr, B., Huanye, S. (eds) Autonomous Systems – Self-Organization, Management, and Control. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8889-6_4

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp