Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Abstract

Quantum entanglement is arguably the most inherently quantum feature of quantum information, computation and communication — a feature that is at heart of quantum physics. Quantum entanglement is also increasingly often considered as being behind new and surprising power quantum computations and communications exhibit — comparing to the classical computation and communication.

Quantum entanglement used to be seen, practically until 1993, especially due to its accompanying non-locality impacts, as being behind various mysteriously looking and weird phenomena of quantum world, and of interest mainly to the philosophers of science. Since then our perception of entanglement has changed much. Currently, quantum entanglement is increasingly believed to be a resource that can be exploited to implement various quantum information processing tasks, at spatially separated locations, and to be behind new gold mine for science and technology to which the outcomes of the research in quantum information science and quantum information technology seem to pave the road.

Quantum entanglement implications are also a deep reason to attempt to develop new, quantum information processing based, foundations of quantum mechanics. To help to do that might be one of big challenges for Informatics.

Support of GAČR grant 201/01/0413 is highly appreciated.

Progress in theory is sometimes done by pessimists.

Progress in technology is always done by optimists.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. A. Acin, D. Bruß, M. Lewenstein, and A. Sanpera. Classification of mixed three-qubit states. quant-ph/0103025, 2001.

    Google Scholar 

  2. Ch. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.Physical Review Letters, 70: 1895 1899, 1993.

    MATH  Google Scholar 

  3. G. Brassard, R. Cleve, and A. Tapp. Cost of exactly simulating quantum entanglement with classical communication.Physical Review letters,83(9):1874–1787, 1999. quant-ph/9901035.

    Google Scholar 

  4. B. Brezger, L. Hackermüler, S. Uttenhalter, J. Petachinka, and A. Zeilinger. Matter-wave interferometer for large molecules. quantph/0202158, 2002.

    Google Scholar 

  5. D. Bouwmeester, J-W. Pan, K. Mattle, M.Eibl, H. Weinfurter, and A. Zeilinger. Experimental quantum teleportation.Nature, 390: 575579, 1997.

    Google Scholar 

  6. S. Bandyopadhyay and V. Roychowdhury. Supercatalysis. quantph/0107103, 2001.

    Google Scholar 

  7. D. Bruß. Characterizing entanglement. quant-ph/0110078, 2001.

    Google Scholar 

  8. Ch. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal. Entanglement-assisted classical capacity of noisy quantum channels. quant-ph/9904023, 1999.

    Google Scholar 

  9. W. Dür. Multipartite bound entangled states that do not violate Bell’s inequality. quant-ph/0107050, 2001.

    Google Scholar 

  10. W. Dür, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two inequivalent ways. quant-ph/0005115, 2000.

    Google Scholar 

  11. K. Dennison and W. K. Wootters. Entanglement sharing among qudits. quant-ph/0106058, 2001.

    Google Scholar 

  12. A. Einstein, B. Podolsky, and N. Rosen. Can quantum mechanical description of physics reality be considered complete?Physical Review, 47: 777–780, 1935.

    Article MATH  Google Scholar 

  13. H. Fan, K. Matsumoto, and H. Imai. Quantifying entanglement by concurrence hierarchy. quant-ph/0204041, 2002.

    Google Scholar 

  14. Ch. A. Fuchs. Quantum mechanics as quantum information. qp/0205039, 2002.

    Google Scholar 

  15. D. Gottesman and I. L. Chuang. Quantum teleportation is a universal computational primitive. quant-ph/9908010, 1999.

    Google Scholar 

  16. J. Gruska and H. Imai. Puzzles, mysteries and power of quantum entanglement. InProceedings of MCU’01, Cisenau, LNCS2055, pages 25–69, 2001.

    Google Scholar 

  17. L. K. Grover Quantum mechanics helps in searching for a needle in a haystack.Physical Review Letters, 78: 325–328, 1997.

    Google Scholar 

  18. J. Gruska.Mathematics unlimited, 2001 and beyond, chapter Quantum computing challenges, pages 529–564. Springer-Verlag, 2000.

    Google Scholar 

  19. J. Gruska.Quantum computing. McGraw-Hill, 1999–2002. See also additions and updatings of the book on http://www.mcgrawhill.co.uk/gruska.

    Google Scholar 

  20. M. Horodecki, P. Horodecki, and R. Horodecki. Bound entanglement can be activated. quant-ph/9806058, 1998.

    Google Scholar 

  21. M. Horodecki, P. Horodecki, and R. Horodecki. Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? quantph/9801069, 1998.

    Google Scholar 

  22. M. Hayashi and K. Matsumoto. Variable length universal entanglement concentration by local operations and its application to teleportation and dense coding. quant-ph/0109028, 2001.

    Google Scholar 

  23. B. Julsgaard, A. Kozhekin, and E. S. Polzik. Experimental long-lived entanglement of two macroscopic objects. quant-ph/0106057, 2001.

    Google Scholar 

  24. R. Jozsa and N. Linden. On the role of entanglement in quantum computational speed-up. quant-ph/0201143, 2002.

    Google Scholar 

  25. I. D. Jonathan and M. B. Plenio. Entanglement-assisted local manipulation of pure quantum states. quant-ph/9905071, 1999.

    Google Scholar 

  26. A. Kent. Causal quantum theory and the collapse locality loophole. quant-ph/0204104, 2002.

    Google Scholar 

  27. D. Kaszilowski, M. Zukowski, and P. Gnacinski. Bound entanglement and local realism.Physical Review A, 65: 03 2107, 2002.

    Google Scholar 

  28. V. M. Kendom, K. Zyckowski, and W. J. Munro. Bounds on entanglement in qudit systems. quant-ph/0203037, 2002.

    Google Scholar 

  29. D. W. Leung. Quantum Vernam cipher. quant-ph/0012077, 2000.

    Google Scholar 

  30. T. W. Marshall. Nonlocality - the party may be over. quant-ph/0203042, 2002.

    Google Scholar 

  31. K. Matsumoto, T. Shimono, and A. Winter. Additivity of the Holevo channel capacity and of the entanglement of formation. In preparation, 2002.

    Google Scholar 

  32. M. Murao and V. Vedral. Remote information concentration using a bound entangled state. quant-ph/0008078, 2000.

    Google Scholar 

  33. R. Raz. Exponential separation of quantum and classical communication complexity. InProceedings of 31st ACM STOC, pages 358–367, 1999.

    Google Scholar 

  34. A. A. Razborov. Quantum communication complexity of symmetric predicates. quant-ph/0204025, 2002.

    Google Scholar 

  35. R. Raussendorf and H. J. Briegel. Quantum computing with measurement only. quant-ph/0010033, 2000.

    Google Scholar 

  36. E. Schrödinger. Die gegenwartige Situation in der Quanenmechanik.Natürwissenschaften, 23:807–812, 823–828, 844–849, 1935.

    Google Scholar 

  37. P. W. Shor. Fault-tolerant quantum computation. InProceedings of 37th IEEE FOCS, pages 56–65, 1996.

    Google Scholar 

  38. P. W. Shor Polynomial time algorithms for prime factorization and discrete logarithms on quantum computer.SIAM J. on Computing, 26 (5): 1484–1509, 1997.

    Google Scholar 

  39. J. A. Smolin. A four-party unlockable bound-entangled state. quantph/0001001, 2000.

    Google Scholar 

  40. P. W. Shor, J. Smolin, and A. Thapliyal. Superactivation of bound entanglement. quant-ph/0005117, 2000.

    Google Scholar 

  41. Guifré Vidal and J. I. Cirac. When only two thirds of the entanglement can be distilled. quant-ph/0107051, 2001.

    Google Scholar 

  42. F. Verstraete, J. Dehaene, B. De Moor, and H. Verschede. Four qubits can be entangled in nine different ways. quant-ph/0109033, 2001.

    Google Scholar 

  43. F. Verstraete and M. M. Wolf. Entanglement versus Bell violations under local filtering operations. quant-ph/0112012, 2001.

    Google Scholar 

  44. R. F. Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model.Phys. Review A, 40: 4277–4281, 1989.

    Article  Google Scholar 

  45. R. F. Werner. All teleportation and dense coding schemes. quantph/0003070, 2000.

    Google Scholar 

  46. K. Zyczkowski, P. Horodecki, A. Sampera, and M. Lewenstein. On the volume of mixed entangled states. quant-ph/9804024, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Faculty of Informatics, Masaryk University, Botanická 68a, Brno, Czech Republik

    Jozef Gruska

  2. ERATO Quantum Computation and Information Project, Hongo 5-28-3, Bunkyo-ku, Tokyo, 113-0033, Japan

    Hiroshi Imai & Keiji Matsumoto

Authors
  1. Jozef Gruska

    You can also search for this author inPubMed Google Scholar

  2. Hiroshi Imai

    You can also search for this author inPubMed Google Scholar

  3. Keiji Matsumoto

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Universidad de Chile, Chile

    Ricardo Baeza-Yates

  2. Università di Pisa, Italy

    Ugo Montanari

  3. Carleton University, Canada

    Nicola Santoro

Rights and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gruska, J., Imai, H., Matsumoto, K. (2002). Power of Quantum Entanglement. In: Baeza-Yates, R., Montanari, U., Santoro, N. (eds) Foundations of Information Technology in the Era of Network and Mobile Computing. IFIP — The International Federation for Information Processing, vol 96. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35608-2_1

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp