Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Micromechanics as a Testbed for Artificial Intelligence Methods Evaluation

  • Conference paper

Part of the book series:IFIP International Federation for Information Processing ((IFIPAICT,volume 218))

Included in the following conference series:

  • 822Accesses

Abstract

Some of the artificial intelligence (AI) methods could be used to improve the performance of automation systems in manufacturing processes. However, the application of these methods in the industry is not widespread because of the high cost of the experiments with the AI systems applied to the conventional manufacturing systems. To reduce the cost of such experiments, we have developed a special micromechanical equipment, similar to conventional mechanical equipment, but of a lot smaller overall sizes and therefore of lower cost. This equipment can be used for evaluation of different AI methods in an easy and inexpensive way. The methods that show good results can be transferred to the industry through appropriate scaling. This paper contains brief description of low cost microequipment prototypes and some AI methods that can be evaluated with mentioned prototypes.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Eberhart, R.: Overview of computational intelligence [and biomedical engineering applications]. Proceedings od the 20-th Annual International Conference of the IEEE Engineering in Medicine and Biology Society3 (1998) 1125–1129

    Google Scholar 

  2. Hui, T., Brown, D., Haynes, B., Xinxian Wang: Embedded e-diagnostic for distributed industrial machinery. IEEE International Symposium on Computational Intelligence for Measurement Systems and Applications (2003) 156–161

    Google Scholar 

  3. Awadallah, M., Morcos, M.: Application of AI tools in fault diagnosis of electrical machines and drives-an overview. IEEE T Energy Conver18, Issue 2 (2003) 245–251

    Article  Google Scholar 

  4. Werbos, P.: Advanced Forecasting Methods for Global Crisis Warning and Models of Intelligence. In: General Systems Yearbook22 (1977) 25–38

    Google Scholar 

  5. Prokhorov, D., Wunsch, D.: Adaptive Critic Designs. IEEE T Neural Networ8, N 5 (1997) 997–1007

    Article  Google Scholar 

  6. Xiaoou Li, Lara-Rosano, F.: A weighted fuzzy Petri net model for knowledge learning and reasoning. International Joint Conference on Neural Networks, IJCNN’ 994 2368–2372

    Google Scholar 

  7. Xiaoou Li, Wen Yu, Lara-Rosano, F.: Dynamic Knowledge Inference and Learning under Adaptive Fuzzy Petri Net Framework. IEEE T Syst Man Cy39, N4 (2000) 442–450

    Google Scholar 

  8. Bottou, L., Cortes, C., Denker, J., Drucker, H., Guyon L., Jackel L., LeCun J., Muller U., Sackinger E., Simard P., Vapnik V.: Comparison of Classifier Methods: a Case Study in Handwritten Digit Recognition. In: Proceedings of 12th IAPR International Conference on Pattern Recognition2 (1994) 77–82

    Google Scholar 

  9. Fukushima, K. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks1 (1988) 119–130

    Article  Google Scholar 

  10. Roska, T., Rodriguez-Vazquez, A.: Toward visual microprocessors. Proceedings of the IEEE90, Issue 7 (July 2002) 1244–1257

    Article  Google Scholar 

  11. Baidyk, T.: Application of Flat Image Recognition Technique for Automation of Micro Device Production. Proceedings of the International Conference on Advanced Intelligent Mechatronics “AIM’01”, Italy (2001) 488–494

    Google Scholar 

  12. Baidyk, T., Kussul, E., Makeyev, O., Caballero, A., Ruiz, L., Carrera, G., Velasco, G.: Flat image recognition in the process of microdevice assembly. Pattern Recogn Lett25/1 (2004) 107–118

    Article  Google Scholar 

  13. Kussul E.M., 1992, Associative Neural Structures. Kiev, Naukova Dumka, 144p. (in Russian).

    Google Scholar 

  14. Amosov N.M., Baidyk T.N., Goltsev A.D., Kasatkin A.M., Kasatkina L.M., Kussul E.M., Rachkovski D.A., 1991, Neurocomputers and Intelligent Robots. Kiev, Naukova Dumka, 272 p. (in Russian).

    Google Scholar 

  15. Baidyk T.N., 2001, Neural Networks and Artificial Intelligence Problems. Kiev, Naukova Dumka, 264 p. (in Russian).

    Google Scholar 

  16. Kussul, E., Rachkovskij, D., Baidyk, T., Talayev, S.: Micromechanical Engineering: a Basis for the Low-cost Manufacturing of Mechanical Microdevices Using Microequipment. J Micromech Microeng6 (1996) 410–425

    Article  Google Scholar 

  17. Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero, A., Velasco, G., Kasatkina, L.: Development of Micromachine Tool Prototypes for Microfactories. J Micromech Microeng12(2002)795–812.

    Article  Google Scholar 

  18. Kussul E., Baidyk T., Ruiz L., Caballero A., Velasco G., 2002, Development of Low-cost Microequipment. 2002 International Symposium on Micromechatronics and Human Science, IEEE, Nagoya, Japan, Oct. 20–23, pp.125–134.

    Chapter  Google Scholar 

  19. Lara-Rosano F., Kussul E., Baidyk T., Ruiz L., Caballero A., Velasco G., 2004, Artificial Intelligence Systems in Micromechanics. In: Artificial Intelligence Applications and Innovations (IFIP 18th Computer Congress), Ed. By Max Bramer, Vladan Devedzic Boston/Dordrecht/London, Kluwer Academic Publishers, pp. 1–10

    Chapter  Google Scholar 

  20. Kussui E., Baidyk T., Ruiz-Huerta L., Caballero-Ruiz A., Velasco G., 2006, Scaling down of microequipment parameters, Precis Eng (to be published).

    Google Scholar 

  21. Yuichi Okazaki, and Tokio Kitahara, Micro-lathe equipped with closed-loop numerical control, 2nd International Workshop on Microfactories IWMF2000, Fribourg, Switzerland, October 9–10, 2000, pp.87–91.

    Google Scholar 

  22. Baidyk T., Kussui E., 2004, Neural Network Based Vision System for Micro Workpieces Manufacturing. WSEAS T Syst, Issue 2, Volume 3, April 2004, pp.483–488.

    Google Scholar 

  23. Baidyk T., Kussui E., Makeyev O. Texture Recognition with Random Subspace Neural Classifier, WSEAS T Circuits Syst, Issue 4, Volume 4, April 2005, pp.319–325.

    Google Scholar 

  24. Werbos P. Approximate Dynamic Programming for Real-Time Control and Neural Modeling. Chapter 13 in Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, (White & Sofge, eds.), Van Nostrand Reinhold, New York, NY, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center of Applied Sciences and Technological Development, National Autonomous University of Mexico, Cd. Universitaria, Circuito Exterior s/n, 04510, Coyoacán, México, D.F., Mexico

    Ernst Kussul, Tatiana Baidyk, Felipe Lara-Rosano & Anabel Martin

  2. Dept. of Electrical and Computer Engineering, Clarkson University, 5720, Potsdam, NY, 136992, USA

    Oleksandr Makeyev

  3. Applied Computational Intelligence Lab, Dept. of Electrical and Computer Engineering, University of Missouri-Rolla, 1870 Miner Circle, Rolla, MO, 65409, USA

    Donald Wunsch

Authors
  1. Ernst Kussul
  2. Tatiana Baidyk
  3. Felipe Lara-Rosano
  4. Oleksandr Makeyev
  5. Anabel Martin
  6. Donald Wunsch

Editor information

Editors and Affiliations

  1. University of Technology, Sydney, Australia

    John Debenham

Rights and permissions

Copyright information

© 2006 International Federation for Information Processing

About this paper

Cite this paper

Kussul, E., Baidyk, T., Lara-Rosano, F., Makeyev, O., Martin, A., Wunsch, D. (2006). Micromechanics as a Testbed for Artificial Intelligence Methods Evaluation. In: Debenham, J. (eds) Professional Practice in Artificial Intelligence. IFIP WCC TC12 2006. IFIP International Federation for Information Processing, vol 218. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-34749-3_29

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp