Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 1284))
Included in the following conference series:
111Accesses
Abstract
In this note we show that, for each chordal graphG, there is a treeT such thatT is a spanning tree of the squareG2 ofG and, for every two vertices, the distance between them inT is not larger than the distance inG plus two. Moreover, we prove that, ifG is a strongly chordal graph or even a dually chordal graph, then there exists a spanning treeT ofG which is an additive 3-spanner as well as a multiplicative 4-spanner ofG. In all cases the treeT can be computed in linear time.
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted graphs,Discrete Comput. Geom.,9 (1993), 81–100.
J.-P. Barthélemy and. A. Guénoche, Trees and Proximity Representations,Wiley, New York, 1991.
C. Berge, Hypergraphs,North Holland, Amsterdam, 1989.
S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg, Optimal simulations of tree machines, in27th IEEE Foundations of Computer Science, Toronto, 1986, 274–282.
A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs,Graph-Theoretic Concepts in Computer Science,Lecture Notes in Computer Science790, J. van Leeuwen, ed., Springer-Verlag, Berlin, New York, 1994, 237–251.
A. Brandstädt, V. Chepoi, and F. Dragan, Cliquer-domination and cliquer-packing problems on dually chordal graphs,SIAM J. Discrete Math.10 (1997), 109–127.
P. Buneman, A characterization of rigid circuit graphs,Discrete Math.,9 (1974), 205–212.
L. Cai and D.G. Corneil, Tree spanners,SIAM J. Disc. Math.,8 (1995), 359–387.
G.J. Chang and G.L. Nemhauser, Ther-domination andk-stability problems on sun-free chordal graphs,SIAM J. Alg. Disc. Meth.,5 (1984), 332–345.
L.P. Chew, There are planar graphs almost as good as the complete graph,J. of Computer and System Sciences,39 (1989), 205–219.
G.A. Dirac, On rigid circuit graphs,Abh. Math. Sem. Univ. Hamburg,25 (1961), 71–76.
F. Dragan, C. Prisacaru, and V. Chepoi, Location problems in graphs and the Helly property (in Russian),Discrete Mathematics, Moscow,4 (1992), 67–73.
D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson and W.P. Thurston, Word Processing in Groups,Jones and Bartlett, Boston, 1992.
M. Farber, Characterization of strongly chordal graphs,Discrete Math.,43 (1983), 173–189.
M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs,SIAM J. Alg. Discrete Meth.,7 (1986), 433–444.
E. Ghys and P. de la Harpe, Les Groupes Hyperboliques d'après M. Gromov,Progress in Mathematics, Vol.83, Birkhauser, 1990.
M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs,Academic Press, London, 1980.
D. Harpl and R.E. Tarjan, Fast algorithms for finding nearest common ancestors.SIAM J. Comput.13 (1984), 338–355.
Hoâng-Oanh Le, Personal communication.
A.L. Liestman and T. Shermer, Additive graph spanners,Networks,23 (1993), 343–364.
N. Linial, E. London and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications,Combinatorica,15 (1995), 215–245.
M.S. Madanlal, G. Venkatesan and C.Pandu Rangan, Tree 3-spanners on interval, permutation and regular bipartite graphs,Information Processing Letters,59 (1996), 97–102.
M. Moscarini, Doubly chordal graphs, Steiner trees and connected domination,Networks,23 (1993), 59–69.
R. Paige, and R.E. Tarjan, Three partition refinement algorithms,SIAM J. Comput.,16 (1987), 973–989.
D. Peleg andA.A. Schaffer, Graph spanners,J. Graph Theory,13 (1989), 99–116.
D. Peleg and J.D. Ullman, An optimal synchronizer for the hypercube, inProc. 6th ACM Symposium on Principles of Distributed Computing, Vancouver, 1987, 77–85.
E. Prisner, Distance approximating spanning trees, inProc. of STACS'97,Lecture Notes in Computer Science1200, (R. Reischuk and M. Morvan, eds.), Springer-Verlag, Berlin, New York, 1997, 499–510.
P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy,W.H. Freeman, San Francisco, California, 1973.
J.P. Spinrad, Doubly lexical ordering of dense 0–1-matrices,Information Processing Letters,45 (1993), 229–235
D.L. Swofford and G.J. Olsen, Phylogeny reconstruction, InMolecular Systematics (D.M. Hillis and C. Moritz, editors), Sinauer Associates Inc., Sunderland, MA., 1990, 411–501.
J.L. Szwarcfiter, and C.F. Bornstein, Clique graphs of chordal and path graphs,SIAM J. Discrete Math.,7 (1994), 331–336.
Author information
Authors and Affiliations
Fachbereich Informatik, Lehrstuhl für Theoretische Informatik, Universität Rostock, Albert-Einstein-Str. 21, D-18051, Rostock, Germany
Andreas Brandstädt & Feodor Dragan
Laboratoire de Biomathématiques, Université d'Aix Marseille II, 27 Bd Jean Moulin, F-13385, Marseille Cedex 5, France
Victor Chepoi
- Andreas Brandstädt
You can also search for this author inPubMed Google Scholar
- Victor Chepoi
You can also search for this author inPubMed Google Scholar
- Feodor Dragan
You can also search for this author inPubMed Google Scholar
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brandstädt, A., Chepoi, V., Dragan, F. (1997). Distance approximating trees for chordal and dually chordal graphs. In: Burkard, R., Woeginger, G. (eds) Algorithms — ESA '97. ESA 1997. Lecture Notes in Computer Science, vol 1284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63397-9_7
Download citation
Published:
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-63397-6
Online ISBN:978-3-540-69536-3
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative