Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Distance approximating trees for chordal and dually chordal graphs

(Extended abstract)

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 1284))

Included in the following conference series:

  • 111Accesses

Abstract

In this note we show that, for each chordal graphG, there is a treeT such thatT is a spanning tree of the squareG2 ofG and, for every two vertices, the distance between them inT is not larger than the distance inG plus two. Moreover, we prove that, ifG is a strongly chordal graph or even a dually chordal graph, then there exists a spanning treeT ofG which is an additive 3-spanner as well as a multiplicative 4-spanner ofG. In all cases the treeT can be computed in linear time.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted graphs,Discrete Comput. Geom.,9 (1993), 81–100.

    Google Scholar 

  2. J.-P. Barthélemy and. A. Guénoche, Trees and Proximity Representations,Wiley, New York, 1991.

    Google Scholar 

  3. C. Berge, Hypergraphs,North Holland, Amsterdam, 1989.

    Google Scholar 

  4. S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg, Optimal simulations of tree machines, in27th IEEE Foundations of Computer Science, Toronto, 1986, 274–282.

    Google Scholar 

  5. A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs,Graph-Theoretic Concepts in Computer Science,Lecture Notes in Computer Science790, J. van Leeuwen, ed., Springer-Verlag, Berlin, New York, 1994, 237–251.

    Google Scholar 

  6. A. Brandstädt, V. Chepoi, and F. Dragan, Cliquer-domination and cliquer-packing problems on dually chordal graphs,SIAM J. Discrete Math.10 (1997), 109–127.

    Google Scholar 

  7. P. Buneman, A characterization of rigid circuit graphs,Discrete Math.,9 (1974), 205–212.

    Google Scholar 

  8. L. Cai and D.G. Corneil, Tree spanners,SIAM J. Disc. Math.,8 (1995), 359–387.

    Google Scholar 

  9. G.J. Chang and G.L. Nemhauser, Ther-domination andk-stability problems on sun-free chordal graphs,SIAM J. Alg. Disc. Meth.,5 (1984), 332–345.

    Google Scholar 

  10. L.P. Chew, There are planar graphs almost as good as the complete graph,J. of Computer and System Sciences,39 (1989), 205–219.

    Google Scholar 

  11. G.A. Dirac, On rigid circuit graphs,Abh. Math. Sem. Univ. Hamburg,25 (1961), 71–76.

    Google Scholar 

  12. F. Dragan, C. Prisacaru, and V. Chepoi, Location problems in graphs and the Helly property (in Russian),Discrete Mathematics, Moscow,4 (1992), 67–73.

    Google Scholar 

  13. D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson and W.P. Thurston, Word Processing in Groups,Jones and Bartlett, Boston, 1992.

    Google Scholar 

  14. M. Farber, Characterization of strongly chordal graphs,Discrete Math.,43 (1983), 173–189.

    Google Scholar 

  15. M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs,SIAM J. Alg. Discrete Meth.,7 (1986), 433–444.

    Google Scholar 

  16. E. Ghys and P. de la Harpe, Les Groupes Hyperboliques d'après M. Gromov,Progress in Mathematics, Vol.83, Birkhauser, 1990.

    Google Scholar 

  17. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs,Academic Press, London, 1980.

    Google Scholar 

  18. D. Harpl and R.E. Tarjan, Fast algorithms for finding nearest common ancestors.SIAM J. Comput.13 (1984), 338–355.

    Google Scholar 

  19. Hoâng-Oanh Le, Personal communication.

    Google Scholar 

  20. A.L. Liestman and T. Shermer, Additive graph spanners,Networks,23 (1993), 343–364.

    Google Scholar 

  21. N. Linial, E. London and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications,Combinatorica,15 (1995), 215–245.

    Google Scholar 

  22. M.S. Madanlal, G. Venkatesan and C.Pandu Rangan, Tree 3-spanners on interval, permutation and regular bipartite graphs,Information Processing Letters,59 (1996), 97–102.

    Google Scholar 

  23. M. Moscarini, Doubly chordal graphs, Steiner trees and connected domination,Networks,23 (1993), 59–69.

    Google Scholar 

  24. R. Paige, and R.E. Tarjan, Three partition refinement algorithms,SIAM J. Comput.,16 (1987), 973–989.

    Google Scholar 

  25. D. Peleg andA.A. Schaffer, Graph spanners,J. Graph Theory,13 (1989), 99–116.

    Google Scholar 

  26. D. Peleg and J.D. Ullman, An optimal synchronizer for the hypercube, inProc. 6th ACM Symposium on Principles of Distributed Computing, Vancouver, 1987, 77–85.

    Google Scholar 

  27. E. Prisner, Distance approximating spanning trees, inProc. of STACS'97,Lecture Notes in Computer Science1200, (R. Reischuk and M. Morvan, eds.), Springer-Verlag, Berlin, New York, 1997, 499–510.

    Google Scholar 

  28. P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy,W.H. Freeman, San Francisco, California, 1973.

    Google Scholar 

  29. J.P. Spinrad, Doubly lexical ordering of dense 0–1-matrices,Information Processing Letters,45 (1993), 229–235

    Google Scholar 

  30. D.L. Swofford and G.J. Olsen, Phylogeny reconstruction, InMolecular Systematics (D.M. Hillis and C. Moritz, editors), Sinauer Associates Inc., Sunderland, MA., 1990, 411–501.

    Google Scholar 

  31. J.L. Szwarcfiter, and C.F. Bornstein, Clique graphs of chordal and path graphs,SIAM J. Discrete Math.,7 (1994), 331–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Fachbereich Informatik, Lehrstuhl für Theoretische Informatik, Universität Rostock, Albert-Einstein-Str. 21, D-18051, Rostock, Germany

    Andreas Brandstädt & Feodor Dragan

  2. Laboratoire de Biomathématiques, Université d'Aix Marseille II, 27 Bd Jean Moulin, F-13385, Marseille Cedex 5, France

    Victor Chepoi

Authors
  1. Andreas Brandstädt

    You can also search for this author inPubMed Google Scholar

  2. Victor Chepoi

    You can also search for this author inPubMed Google Scholar

  3. Feodor Dragan

    You can also search for this author inPubMed Google Scholar

Editor information

Rainer Burkard Gerhard Woeginger

Rights and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandstädt, A., Chepoi, V., Dragan, F. (1997). Distance approximating trees for chordal and dually chordal graphs. In: Burkard, R., Woeginger, G. (eds) Algorithms — ESA '97. ESA 1997. Lecture Notes in Computer Science, vol 1284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63397-9_7

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp