Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

On Plotkin-Elias type bounds for binary arithmetic codes

  • Bounds for Codes
  • Conference paper
  • First Online:
Algebraic Coding(Algebraic Coding 1993)

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 781))

Included in the following conference series:

Abstract

We establish a new upper bound for binary arithmetic codes, which is asymptotically better than previously known bounds. We also discuss possible “candidates” such as Plotkin and Elias bounds for arithmetic codes over an arbitrary alphabet.

The second author is greatly indebted to the first one for inviting him for a 6-week stay at the Institute for Problems of Information Transmission.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W.W. Peterson, E.J. Weldon, Jr.: Error-correcting codes. Cambridge: MIT Press 1972

    Google Scholar 

  2. J.L. Massey, O.N. Garcia: Error-correcting codes in computer arithmetics. In: Advances in Information Systems Science 4, New York-London: Plenum Press 1972, Ch. 5

    Google Scholar 

  3. G.A. Kabatianski: Bounds on the number of code words in binary arithmetic codes. Problems of Information Transmission 12-4, 277–283 (1976)

    Google Scholar 

  4. R.J. McEliece, E.R. Rodemich, H.C. Rumsey, Jr., L.R. Welch: New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE IT-23, 157–166 (1977)

    Google Scholar 

  5. E.R. Berlekamp (ed.): Key papers in the development of coding theory. New-York IEEE Press 1974

    Google Scholar 

  6. L.A. Bassalygo: New upper bounds for codes correcting errors. Problems of Information Transmission 6-4, 41–45 (1965), in Russian

    Google Scholar 

  7. P. Solé: A Lloyd theorem in weakly metric association schemes. Europ. J. Combinatorics 10, 189–196 (1989)

    Google Scholar 

  8. Ph. Delsarte: An algebraic approach to the association schemes of coding theory. Philips Research Reports Suppl. 10, 1973

    Google Scholar 

  9. V.I. Levenshtein: Designs as maximum codes in polynomial metric spaces. Acta Applicandae Mathematicae 25, 1–I, 1992

    Google Scholar 

  10. I.M. Boyarinov, G.A. Kabatianski: Arithmetic (n,A)-codes over an arbitrary base. Sov. Phys. Dokl. 20-4, 247–249 (1975)

    Google Scholar 

  11. W.E. Clark, J. J. Liang: On modular weight and cyclic nonadjacent forms for arithmetic codes. IEEE-IT 20, 767–770 (1974)

    Google Scholar 

  12. S. Ernvall: On bounds for nonbinary arithmetic codes. Ars Combinatoria 29-B, 85–89 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Problems of Information Transmission, Ermolovoy 19, GSP-4, Moscow, Russia

    Gregory Kabatianski

  2. Dpt INF, Centre National de la Recherche Scientifique Télécom Paris, 46 rue Barrault, 75634, Paris Cedex 13, France

    Antoine Lobstein

Authors
  1. Gregory Kabatianski

    You can also search for this author inPubMed Google Scholar

  2. Antoine Lobstein

    You can also search for this author inPubMed Google Scholar

Editor information

G. Cohen S. Litsyn A. Lobstein G. Zémor

Rights and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kabatianski, G., Lobstein, A. (1994). On Plotkin-Elias type bounds for binary arithmetic codes. In: Cohen, G., Litsyn, S., Lobstein, A., Zémor, G. (eds) Algebraic Coding. Algebraic Coding 1993. Lecture Notes in Computer Science, vol 781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57843-9_27

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp