Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 547))
Included in the following conference series:
3729Accesses
Abstract
The paper gives a general definition for the concept of strong Dickson pseudoprimes which contains as special cases the Carmichael numbers and the strong Fibonacci pseudoprimes. Furthermore, we give necessary and sufficient conditions for two important classes of strong Dickson pseudoprimes and deduce some properties for their elements. A suggestion of how to improve a primality test by Baillie&Wagstaff concludes the paper.
This work peformed in part at the University of Klagenfurt was supported by the Forschungskommission of the University of Klagenfurt and by the Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung under project no. P6174.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Chernick J.: On Fermat’s simple theorem. Bull.Amer.Math.Soc.45, 269–274 (1939).
Dubner H.: A New Method for Producing Large Carmichael Numbers. Math.Comp.53, No. 187, 411–414 (1989).
Baillie, R., Wagstaff Jr., S.S.: Lucas pseudoprimes. Math.Comp.35, 1391–1417 (1980).
Di Porto, A., Filipponi, P.: A Probabilistic Primality Test Based on the Properties of Certain Generalized Lucas Numbers. In: Advances in Cryptology — Eurocrypt’88, Lecture Notes in Computer Science330, Springer-Verlag, New York-Berlin-Heidelberg, pp. 211–223, 1988.
Filipponi, P.: Table of Fibonacci Pseudoprimes to 108. Note Recensioni Notizie37, No. 1–2, 33–38 (1988).
Jaeschke, G.: Math.Comp.55, No. 191, 383–389 (1990).
Koblitz, N.: A Course in Number Theory and Cryptography. Springer-Verlag, New York-Berlin-Heidelberg, 1987.
Lidl, R., MÜller, W.B.: Permutation polynomials in RSA-cryptosystems. Advances in Cryptology-Crypto’ 83 (ed. D. Chaum), New York, Plenum Press, pp. 293–301, 1984.
Lidl, R., MÜller, W.B.: Generalizations of the Fibonacci Pseudoprimes Test. To appear in Discrete Mathem.92 (1991).
Lidl, R., MÜller, W.B., Oswald A.: Some Remarks on Strong Fibonacci Pseudoprimes. Applicable Algebra in Engineering, Communication and Computing (AAECC)1, 59–65 (1990).
MÜller, W.B.: Polynomial Functions in Modern Cryptology. In: Contributions to General Algebra3, Teubner-Verlag, Stuttgart, pp. 7–32, 1985.
MÜller, W.B., NÖbauer R.: Cryptanalysis of the Dickson-scheme. In: Advances in Cryptology — Eurocrypt’85, Lecture Notes in Computer Science219, Springer-Verlag, New York-Berlin-Heidelberg, pp. 50–61, 1986.
NÖbauer, W.: Über die Fixpunkte der Dickson—Permutationen. Sb.d.Österr.Akad.-d.Wiss., math.-nat.Kl., Abt.II, Bd.193, 115–133 (1984).
Ribenboim, P.: The Book of Prime Number Records. Springer-Verlag, New York-Berlin-Heidelberg, 1988.
Singmaster, D.: Some Lucas pseudoprimes. Abstracts Amer.Math.Soc.4, No.83T-10-146, p.197 (1983).
Author information
Authors and Affiliations
Institut für Mathematik, Universität Klagenfurt, A-9022, Klagenfurt, Austria
Winfried B. Müller
School of Computing and Mathematics, Teesside Polytechnic, Middlesbrough, Cleveland, TS1 3BA, Great Britain
Alan Oswald
- Winfried B. Müller
You can also search for this author inPubMed Google Scholar
- Alan Oswald
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Royal Holloway and Bedford New College, Univ. of London, Egham Hill, Surrey, TW20 0EX, UK
Donald W. Davies
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Müller, W.B., Oswald, A. (1991). Dickson Pseudoprimes and Primality Testing. In: Davies, D.W. (eds) Advances in Cryptology — EUROCRYPT ’91. EUROCRYPT 1991. Lecture Notes in Computer Science, vol 547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46416-6_45
Download citation
Published:
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-54620-7
Online ISBN:978-3-540-46416-7
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative