Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 2469))
Included in the following conference series:
1180Accesses
Abstract
Following the recent successes of bounded model-checking, we reconsider the problem of constructing models of discrete-time Duration Calculus formulae. While this problem is known to be non-elementary when arbitrary length models are considered [Han94], it turns out to be only NP-complete when constrained to bounded length.
As a corollary we obtain that model construction is in NP for the formulae actually encountered in case studies using Duration Calculus, as these have a certain small-model property.
First experiments with a prototype implementation of the procedures demonstrate a competitive performance.
Chapter PDF
Similar content being viewed by others
References
A.Ayari AND D.Basin. Bounded model construction for monadic second-order logics. In E. A. Emerson and A. P. Sistla, eds.,Computer Aided Verification (CAV 2000), volume 1855 ofLecture Notes in Computer Science, pages 99–113. Springer-Verlag, 2000.
R.Alur AND D. L.Dill. A theory of timed automata.Theoretical Computer Science, 126(2):183–235, 1994.
O.Bär. Übersetzung von SMI in um lineare Arithmetik erweiterte CNF. Diplomarbeit, Fachbereich Informatik der Carl v. Ossietzky Universität Oldenburg, Germany, December 2001.
A.Biere, A.Cimatti,AND Y.Zhu. Symbolic model checking without BDDs. InTACAS’99, volume 1579 ofLecture Notes in Computer Science. Springer-Verlag, 1999.
M.Biehl, N.Klarlund,AND T.Rauhe. Mona: Decidable arithmetic in practice. In J.Parrow, eds.Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘96), volume 1135 ofLecture Notes in Computer Science. Springer-Verlag, 1996 Jonsson and Parrow [JP96], pages 459–462.
A.Bouajjani, Y.Lakhnech,AND R.Robbana. From duration calculus to linear hybrid automata. In P. Wolper, ed.,Computer Aided Verification (CAV ‘95), volume 939 ofLecture Notes in Computer Science. Springer-Verlag, 1995.
M.Fränzle.Controller Design from Temporal Logic: Undecidability need not matter. Dissertation, Technische Fakultät der Christian-Albrechts-Universität Kiel, Germany, 1997. Available as Bericht Nr. 9710, Institut für Informatik und Prakt. Mathematik der Christian-Albrechts-Universität Kiel, Germany, and via WWW under URLhttp://ca. informatik.uni-oldenburg.de/~fraenzle/diss. html.
M.Fränzle. Model-checking dense-time duration calculus. Accepted forFormal Aspects of Computing, to appear 2002.
M. R.Hansen. Model-checking discrete duration calculus.Formal Aspects of Computing, 6(6A):826–845, 1994.
M. R.Hansen AND Zhou Chaochen. Duration calculus: Logical foundations.Formal Aspects of Computing, 9(3):283–330, 1997.
B.Jonsson AND J.Parrow, eds.Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘96), volume 1135 ofLecture Notes in Computer Science. Springer-Verlag, 1996.
Y.Laknech.Specification and Verification of Hybrid and Real-Time Systems. Dissertation, Technische Fakultät der Christian-Albrechts-Universität Kiel, Germany, 1996.
H.Langmaack, W.-P.De Roever,AND J.Vytopil, eds.Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘94), volume 863 ofLecture Notes in Computer Science. Springer-Verlag, 1994.
B.Moszkowski. A temporal logic for multi-level reasoning about hardware.IEEE Computer, 18(2):10–19, 1985.
A. R.Meyer AND L.Stockmeyer. Nonelementary word problems in automata and logic. InProc. AMS Symposium on Complexity of Computation, April 1973.
A.Nonnengart AND C.Weidenbach. Computing small clause normal forms. In A. Robinson and A. Voronkov, eds.,Handbook of Automated Reasoning. Elsevier Science B.V., 1999.
P. K.Pandya. Weak chop inverses and liveness in mean-value calculus. In J.Parrow, eds.Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘96), volume 1135 ofLecture Notes in Computer Science. Springer-Verlag, 1996 Jonsson and Parrow [JP96], pages 148–167.
P.Pandya. Specifying and deciding quantified discrete-time duration calculus formulae using DCVALID. Technical report TCS00-PKP-1, Tata Institute of Fundamental Research, India, 2000.
D. A.Plaisted AND S.Greenbaum. A structure-preserving clause form translation.Journal of Symbolic Computation, 2:293–304, 1986.
A. P.Ravn.Design of Embedded Real-Time Computing Systems. Doctoral dissertation, Department of Computer Science, Danish Technical University, Lyngby, DK, October 1995. Available as technical report ID-TR: 1995-170.
A. P.Ravn, H.Rischel,AND K. M.Hansen. Specifying and verifying requirements of real-time systems.IEEE Transactions on Software Engineering, 19(1):41–55, January 1993.
J. U.Skakkebæk. Liveness and fairness in duration calculus. In B. Jonsson and J. Parrow, eds.,CONCUR‘94, volume 836 ofLecture Notes in Computer Science, pages 283–298. Springer-Verlag, 1994.
J. U.Skakkebæk AND P.Sestoft. Checking validity of duration calculus formulas. ProCoS Technical Report ID/DTH JUS 3/1, Technical University of Denmark, March 1994.
J. U.Skakkebæk AND N.Shankar. Towards a duration calculus proof assistant in PVS. In W.-P.De Roever,AND J.Vytopil, eds.Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘94), volume 863 ofLecture Notes in Computer Science. Springer-Verlag, 1994 Langmaack et al. [LdRV94], pages 660–679.
G.Tseitin. On the complexity of derivations in propositional calculus. In A. Slisenko, ed.,Studies in Constructive Mathematics and Mathematical Logics, 1968.
Zhou Chaochen AND M. R.Hansen. Chopping a point. Handout at the 4th ProCoS Working Group Meeting, March 1996.
Zhou Chaochen. Duration calculi: An overview. In D. Bjørner, M. Broy, and I. V. Pottosin, eds.,Formal Methods in Programming and Their Applications, volume 735 ofLecture Notes in Computer Science, pages 256–266. Springer-Verlag, 1993.
Zhou Chaochen, C. A. R.Hoare,AND A. P.Ravn. A calculus of durations.Information Processing Letters, 40(5):269–276, 1991.
Zhou Chaochen, M. R.Hansen,AND P.Sestoft. Decidability and undecidability results for duration calculus. In P. Enjalbert, A. Finkel, and K. W. Wagner, eds.,Symposium on Theoretical Aspects of Computer Science (STACS 93), volume 665 ofLecture Notes in Computer Science, pages 58–68. Springer-Verlag, 1993.
Zhou Chaochen AND Li Xiaoshan. A mean value calculus of durations. In A. W. Roscoe, ed.,A Classical Mind — Essays in Honour of C.A.R. Hoare, chapter 25, pages 431–451. Prentice-Hall Intl., 1994.
Zhou Chaochen,Zhang Jingzhong,Yang Lu,AND Li Xiaoshan. Linear duration invariants. In W.-P.De Roever,AND J.Vytopil, eds.Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘94), volume 863 ofLecture Notes in Computer Science. Springer-Verlag, 1994 Langmaack et al. [LdRV94], pages 86–109.
Author information
Authors and Affiliations
Department of Computer Science, Carl-von-Ossietzky Universität Oldenburg, P.O. Box 2503, D-26111, Oldenburg, Germany
Martin Fränzle
- Martin Fränzle
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Fachbereich Informatik, Universität Oldenburg, Ammerländer Herrstr. 114-118, 26129, Oldenburg, Germany
Werner Damm & Ernst -Rüdiger Olderog &
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fränzle, M. (2002). Take It NP-Easy: Bounded Model Construction for Duration Calculus. In: Damm, W., Olderog, E.R. (eds) Formal Techniques in Real-Time and Fault-Tolerant Systems. FTRTFT 2002. Lecture Notes in Computer Science, vol 2469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45739-9_16
Download citation
Published:
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-44165-6
Online ISBN:978-3-540-45739-8
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative