Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 2227))
Included in the following conference series:
841Accesses
3Citations
Abstract
In the literature there exist several methods for errors-anderasures decoding of RS codes. In this paper we present a unified approach that makes use of behavioral systems theory. We show how different classes of existing algorithms (e.g., syndrome based or interpolation based, non-iterative, erasure adding or erasure deleting) fit into this framework. In doing this, we introduce a slightly more general WB key equation and show how this allows for the handling of erasure locations in a natural way.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araki, K. and I. Fujita (1992). Generalized syndrome polynomials for decoding Reed-Solomon codes.IEICE Trans. FundamentalsE75–A, 1026–1029.
Araki, K., Takada, M. and M. Morii (1992). On the efficient decoding of Reed-Solomon codes based on GMD criterion.Proc. 22nd Int. Symp. on Multiple Valued Logic, 138–142.
Araki, K., Takada, M. and M. Morii (1993). The efficient GMD decoders for BCH codes.IEICE Trans. Inform. and SystemsE76–D, 594–604.
Berlekamp, E.R. (1996). Bounded distance+1 soft-decision Reed-Solomon decoding.IEEE Trans. Inform. Theory42, 704–721.
Blackburn, S.R. (1997). A generalized rational interpolation problem and the solution of the WB algorithm.Designs,Co des and Cryptography11, 223–234.
Blahut, R.E. (1983).Theory and Practice of Error Control Codes, Addison-Wesley.
Elias, P. (1954). Error-free coding.IRE Trans. Inform. TheoryPGIT–4, 29–37.
Fitzpatrick, P. (1995). On the key equation.IEEE Trans. Inform. Theory41, 1290–1302.
Forney, G.D., Jr. (1966). Generalized minimum distance decoding.IEEE Trans. Inform. Theory12, 125–131.
Fujisawa, M. and S. Sakata (1999). On fast generalized minimum distance decoding for algebraic codes.Preproc. AAECC-13, 82–83.
Kamiya, N. (1995). On multisequence shift register synthesis and generalizedminimum-distance decoding of Reed-Solomon codes.Finite Fields Appl.1, 440–457.
Kamiya, N. (1999). A unified algorithm for solving key equations for decoding alternant codes.IEICE Trans. Fundamentals,E82–A, 1998–2006.
Kobayashi, Y., Fujisawa, M. and S. Sakata (2000). Constrained shiftregister synthesis: fast GMD decoding of 1D algebraic codes.IEICE Trans. Fundamentals83, 71–80.
Kötter, R. (1996). Fast generalized minimum distance decoding of algebraic geometric and Reed-Solomon codes.IEEE Trans. Inform. Theory42, 721–738.
Kuijper, M. and J.C. Willems (1997). On constructing a shortest linear recurrence relation.IEEE Trans. Aut. Control42, 1554–1558.
Kuijper, M. (1999). The BM algorithm, error-correction, keystreams and modeling. InDynamical Systems,Control, Coding,Computer Vision, G. Picci, D. S. Gilliam (eds.), Birkhäuser
Kuijper, M. (1999). Further results on the use of a generalized BM algorithm for BCH decoding beyond the designed error-correcting capability,Proc. 13th AAECC, Hawaii, USA (1999), 98–99.
Kuijper, M. (2000). Algorithms for Decoding and Interpolation. InCodes,Systems, and Graphical Models, IMA Series Vol. 123, B. Marcus and J. Rosenthal (eds.), pp. 265–282, Springer-Verlag.
Kuijper, M. (2000). A system-theoretic derivation of the WB algorithm, inProc. IEEE International Symposium on Information Theory (ISIT’00) p. 418.
Sorger, U. (1993). A new Reed-Solomon decoding algorithm based on Newton’s interpolation.IEEE Trans. Inform. Theory39, 358–365.
Taipale, D.J. and M.J. Seo (1994). An efficient soft-decision Reed-Solomon decoding algorithm.IEEE Trans. Info. Theory40, 1130–1139.
Wicker, S.B. (1995).Error control systems, Prentice Hall.
Willems, J.C. (1991). Paradigms and puzzles in the theory of dynamical systems.IEEE Trans. Aut. Control36, 259–294.
Author information
Authors and Affiliations
Dept. of EE Engineering, University of Melbourne, 3010, VIC, Australia
Margreta Kuijper
Philips Research, 5656, AA Eindhoven, The Netherlands
Marten van Dijk, Henk Hollmann & Job Oostveen
- Margreta Kuijper
Search author on:PubMed Google Scholar
- Marten van Dijk
Search author on:PubMed Google Scholar
- Henk Hollmann
Search author on:PubMed Google Scholar
- Job Oostveen
Search author on:PubMed Google Scholar
Editor information
Editors and Affiliations
Department of Mathematics, RMIT University, GPO Box 2476V, 3001, Melbourne, Australia
Serdar Boztaş
Department of Computing, Macquarie University, 2109, NSW, Australia
Igor E. Shparlinski
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuijper, M., van Dijk, M., Hollmann, H., Oostveen, J. (2001). A Unifying System-Theoretic Framework for Errors-and-Erasures Reed-Solomon Decoding. In: Boztaş, S., Shparlinski, I.E. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2001. Lecture Notes in Computer Science, vol 2227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45624-4_36
Download citation
Published:
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-42911-1
Online ISBN:978-3-540-45624-7
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative