Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Approximation Schemes for Degree-Restricted MST and Red-Blue Separation Problem

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 2719))

Included in the following conference series:

  • 2031Accesses

Abstract

We develop a quasi-polynomial time approximation scheme for the Euclidean version of the Degree-restricted MST by adapting techniques used previously for approximating TSP. Givenn points in the plane,d = 2 or 3, and > 0, the scheme finds an approximation with cost within 1 + of the lowest cost spanning tree with the property that all nodes have degree at mostd. We also develop a polynomial time approximation scheme for the Euclidean version of the Red-Blue Separation Problem.

Supported by David and Lucille Packard Fellowship, and NSF Grants CCR-0098180 and CCR-009818. Work done partially while visiting the CS Dept at UC Berkeley.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Polynomial-time approximation schemes for Euclidean TSP and other geometric problems.Proceedings of 37th IEEE Symp. on Foundations of Computer Science, 1996.

    Google Scholar 

  2. S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other geometric problems.JACM45(5) 753–782, 1998.

    Article MATH MathSciNet  Google Scholar 

  3. S. Arora. Approximation schemes for NP-hard geometric optimization problems: A survey.Math Programming, 2003 (to appear). Available from www.cs.princeton.edu/~arora.

    Google Scholar 

  4. S. Arora and G. Karakostas. Approximation schemes for minimum latency problems.Proc. ACM Symposium on Theory of Computing, 1999.

    Google Scholar 

  5. S. Arora, P. Raghavan, and S. Rao. Approximation schemes for the Euclideank-medians and related problems. InProc. 30th ACM Symposium on Theory of Computing, pp 106–113, 1998.

    Google Scholar 

  6. J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many points.Proc. Cambridge Philos. Soc.55:299–327, 1959.

    Article MATH MathSciNet  Google Scholar 

  7. M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In [9].

    Google Scholar 

  8. A. Czumaj and A. Lingas. A polynomial time approximation scheme for Euclidean minimum costk-connectivity.Proc. 25th Annual International Colloquium on Automata, Languages and Programming, LNCS, Springer Verlag 1998.

    Google Scholar 

  9. D. Hochbaum, ed. Approximation Algorithms for NP-hard problems. PWS Publishing, Boston, 1996.

    Google Scholar 

  10. S. Khuller, B. Raghavachari, and N. Young. Low degree spanning tree of small weight.SIAM J. Computing,25:355–368, 1996. Preliminary version inProc. 26th ACM Symposium on Theory of Computing, 1994.

    Article MATH MathSciNet  Google Scholar 

  11. S. G. Kolliopoulos and S. Rao. A nearly linear time approximation scheme for the Euclideank-median problem.LNCS, vol.1643, pp 378–387, 1999.

    Google Scholar 

  12. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys. The traveling salesman problem. John Wiley, 1985

    Google Scholar 

  13. C.S. Mata and J. Mitchell. Approximation Algorithms for Geometric tour and network problems. InProc. 11th ACM Symp. Comp. Geom., pp 360–369, 1995.

    Google Scholar 

  14. J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple PTAS for geometrick-MST, TSP, and related problems.SIAM J. Comp.,28, 1999. Preliminary manuscript, April 30, 1996. To appear inSIAM J. Computing.

    Google Scholar 

  15. C. H. Papadimitriou and U. V. Vazirani. On two geometric problems related to the traveling salesman problem.J. Algorithms5(1984), pp. 231–246.

    Article MATH MathSciNet  Google Scholar 

  16. B. Raghavachari. Algorithms for finding low degree structures. In [9]

    Google Scholar 

  17. S. Rao and W. Smith. Approximating geometric graphs via “spanners” and “banyans.” InProc. 30th ACM Symposium on Theory of Computing, pp. 540–550, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Princeton University, Princeton, NJ

    Sanjeev Arora

  2. Yale University, New Haven, CT

    Kevin L. Chang

Authors
  1. Sanjeev Arora

    You can also search for this author inPubMed Google Scholar

  2. Kevin L. Chang

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

    Jos C. M. Baeten

  2. School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta, GA, 30332-0205, USA

    Jan Karel Lenstra

  3. Department of Information Technology, Uppsala University, P.O. Box 337, 75105, Uppsala, Sweden

    Joachim Parrow

  4. Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

    Gerhard J. Woeginger

Rights and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arora, S., Chang, K.L. (2003). Approximation Schemes for Degree-Restricted MST and Red-Blue Separation Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds) Automata, Languages and Programming. ICALP 2003. Lecture Notes in Computer Science, vol 2719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45061-0_16

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp