Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 1992))
Included in the following conference series:
Abstract
Almost all of the current public-key cryptosystems (PKCs) are based on number theory, such as the integer factoring problem and the discrete logarithm problem (which will be solved in polynomialtime after the emergence of quantum computers). While the McEliece PKC is based on another theory, i. e. coding theory, it is vulnerable against several practical attacks. In this paper, we carefully review currently known attacks to the McEliece PKC, and then point out that, without any decryption oracles or any partial knowledge on the plaintext of the challenge ciphertext, no polynomial-time algorithm is known for inverting the McEliece PKC whose parameters are carefully chosen. Under the assumption that this inverting problem is hard, we propose slightly modified versions of McEliece PKC that can be proven,in the random oracle model, to be semantically secure against adaptive chosen-ciphertext attacks. Our conversions can achieve the reduction of the redundant data down to 1 /3 ~1 /4 compared with the generic conversions for practical parameters.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
C.M. Adams and H. Meijer.“Security-Related Comments Regarding McEliece’ s Public-Key Cryptosystem ”. InProc. of CRYPTO’ 87,LNCS 293, pages 224–228. Springer-Verlag, 1988.
M. Bellare and P. Rogaway.“Optimal Asymmetric Encryption ”. InProc. of EUROCRYPT’ 94,LNCS 950, pages 92–111, 1995.
T. Berson.“Failure of the McEliece Public-Key Cryptosystem Under MessageResend and Related-Message Attack ”. InProc. of CRYPTO’ 97,LNCS 1294, pages 213–220. Springer-Verlag, 1997.
A. Canteaut and N. Sendrier.“Cryptoanalysis of the Original McEliece Cryptosystem ”. InProc. of ASIACRYPT’ 98, pages 187–199, 1998.
W. Diffie and M. Hellman.“New directions in cryptography ”.IEEE Trans. IT, 22(6): 644–654, 1976.
D. Dolve, C. Dwork, and M. Naor.“Non-Malleable Cryptography ”. InProc. of the 23rd STOC. ACM Press, 1991.
T. ElGamal.“A public-key cryptosystem and a signature scheme bsed on discrete logarithms ”. InProc. of CRYPTO’ 84, pages 10–18, 1985.
E. Fujisaki and T. Okamoto.“ How to Enhance the Security of Public-Key Encryption at Minimum Cost ”. InProc. of PKC’ 99,LNCS 1560, pages 53–68, 1999.
E. Fujisaki and T. Okamoto.“Secure Integration of Asymmetric and Symmetric Encryption Schemes ”. InProc. of CRYPTO’ 99,LNCS 1666, pages 535–554, 1999.
J.K. Gibson.“Equivalent Goppa Codes and Trapdoors to McEliece’ s Public Key Cryptosystem ”. InProc. of EUROCRYPT’ 91,LNCS 547, pages 517–521. Springer-Verlag, 1991.
S. Goldwasser and S. Micali.“Probabilistic encryption ”.Journal of Computer and System Sciences, pages 270–299, 1984.
C. Hall, I. Goldberg, and B. Schneier.“Reaction Attacks Against Several PublicKey Cryptosystems ”. InProc. of the 2nd International Conference on Information and CommunicationsSecurity (ICICS’ 99),LNCS 1726, pages 2–12, 1999.
K. Kobara and H. Imai.“Countermeasure against Reaction Attacks (in Japanese)”. InThe 2000 Symposium on Cryptography and Information Security:A12, January 2000.
V.I. Korzhik and A.I. Turkin.“Cryptanalysis of McEliece’ s Public-Key Cryptosys tem ”. InProc. of EUROCRYPT’ 91,LNCS 547, pages 68–70. Springer-Verlag, 1991.
P.J. Lee and E.F. Brickell.“An Observation on the Security of McEliece’ s PublicKey Cryptosystem ”. InProc. of EUROCRYPT’ 88,LNCS 330, pages 275–280. Springer-Verlag, 1988.
P. Loidreau.“Strengthening McEliece Cryptosystem ”. InProc.of ASIACRYPT 2000. Springer-Verlag, 2000.
P. Loidreau and N. Sendrier.“Some weak keys in McEliece public-key cryptosystem ”. InProc. of IEEE International Symposium on Information Theory, ISIT’ 98, page 382, 1998.
R.J. McEliece.“A Public-Key Cryptosystem Based on Algebraic Coding Theory ”. InDeep Space Network Progress Report, 1978.
A.J. Menezes, P.C. Oorschot, and S.A. Vanstone.“McEliece public-key encryption ”. In “Handbook of Applied Cryptography ”, page 299.CRC Press, 1997.
D. Naccache and J. Stern.“A New Cryptosystem based on Higher Residues ”. InProc. of the 5th CCS, pages 59–66. ACM Press, 1998.
T. Okamoto, K. Tanaka, and S. Uchiyama.“Quantum Public-Key Cryptosystems ”. InProc. of CRYPTO 2000,LNCS 1880, pages 147–165. Springer-Verlag, 2000.
T. Okamoto and S. Uchiyama.“A New Public Key Cryptosystem as Secure as Factoring ”. InProc. of EUROCRYPT’ 98,LNCS 1403, pages 129–146, 1999.
P. Paillier.“Public-Key Cryptosystems Based on Discrete Logarithms Residues ”. InProc. of EUROCRYPT’ 99,LNCS 1592, pages 223–238. Springer-Verlag, 1999.
D. Pointcheval.“Chosen-Ciphertext Security for Any One-Way Cryptosystem ”. InProc. of PKC 2000,LNCS 1751, pages 129–146. Springer-Verlag, 2000.
P.W. Shor.“Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer ”.SIAM Journal on Computing, 26: 1484–1509, 1997.
J. Stern.“A method for finding codewords of small weight ”. InProc. of Coding Theory and Applications,LNCS 388, pages 106–113. Springer-Verlag, 1989.
H.M. Sun.“Improving the Security of the McEliece Public-Key Cryptosystem ”. InProc. of ASIACRYPT’ 98, pages 200–213, 1998.
H.M. Sun.“Further Cryptanalysis of the McEliece Public-Key Cryptosystem ”.IEEE Trans. on communication letters, 4:18–19, 2000.
A. Vardy.“The Intractability of Computing the Minimum Distance of a Code ”.IEEE Trans. on IT, 43: 1757–1766, 1997.
Author information
Authors and Affiliations
Institute of Industrial Science, The University of Tokyo, Roppongi, 106, Tokyo, Minato-ku, Japan
Kazukuni Kobara & Hideki Imai
- Kazukuni Kobara
You can also search for this author inPubMed Google Scholar
- Hideki Imai
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Information and Communications University,Information Security Group, 58-4 Hwaam-dong,Yusong-gu, 305-732, Taejon, Korea
Kwangjo Kim
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kobara, K., Imai, H. (2001). Semantically Secure McEliece Public-Key Cryptosystems -Conversions for McEliece PKC -. In: Kim, K. (eds) Public Key Cryptography. PKC 2001. Lecture Notes in Computer Science, vol 1992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44586-2_2
Download citation
Published:
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-41658-6
Online ISBN:978-3-540-44586-9
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative