Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Flexible Data Cubes for Online Aggregation

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 1973))

Included in the following conference series:

  • 2911Accesses

Abstract

Applications like Online Analytical Processing depend heavily on the ability to quickly summarize large amounts of information. Techniques were proposed recently that speed up aggregate range queries on MOLAP data cubes by storing pre-computed aggregates. These approaches try to handle data cubes of any dimensionality by dealing with all dimensions at the same time and treat the different dimensions uniformly. The algorithms are typically complex, and it is difficult to prove their correctness and to analyze their performance. We present a new technique to generate Iterative Data Cubes (IDC) that addresses these problems. The proposed approach provides a modular framework for combining one-dimensional aggregation techniques to create space-optimal high-dimensional data cubes. A large variety of cost tradeoffs for high-dimensional IDC can be generated, making it easy to find the right configuration based on the application requirements.

This work was partially supported by NSF grants EIA-9818320, IIS-98-17432, and IIS-99-70700.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in a multidimensional database. InProc. Int. Conf. on Very Large Databases (VLDB), pages 156–165, 1997.

    Google Scholar 

  2. K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg CUBEs. InProc. Int. Conf. on Management of Data (SIGMOD), pages 359–370, 1999.

    Google Scholar 

  3. C.-Y. Chan and Y. E. Ioannidis. Hierarchical cubes for range-sum queries. InProc. Int. Conf. on Very Large Databases (VLDB), pages 675–686, 1999. Extended version published as Tech. Report, Univ. of Wisconsin, 1999.

    Google Scholar 

  4. E. F. Codd. Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical report, E. F. Codd and Associates, 1993.

    Google Scholar 

  5. S. Geffner, D. Agrawal, and A. El Abbadi. The dynamic data cube. InProc. Int. Conf. on Extending Database Technology (EDBT), pages 237–253, 2000.

    Google Scholar 

  6. S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative prefix sums: An efficient approach for querying dynamic OLAP data cubes. InProc. Int. Conf. on Data Engineering (ICDE), pages 328–335, 1999.

    Google Scholar 

  7. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals.Data Mining and Knowledge Discovery, pages 29–53, 1997.

    Google Scholar 

  8. H. Gupta. Selection of views to materialize in a data warehouse. InProc. Int. Conf. on Database Theory (ICDT), pages 98–112, 1997.

    Google Scholar 

  9. H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for OLAP. InProc. Int. Conf. on Data Engineering (ICDE), pages 208–219, 1997.

    Google Scholar 

  10. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. InProc. Int. Conf. on Management of Data (SIGMOD), pages 205–216, 1996.

    Google Scholar 

  11. C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data cubes. InProc. Int. Conf. on Management of Data (SIGMOD), pages 73–88, 1997.

    Google Scholar 

  12. T. Johnson and D. Shasha. Some approaches to index design for cube forests.IEEE Data Engineering Bulletin, 20(1):27–35, 1997.

    Google Scholar 

  13. Y. Kotidis and N. Roussopoulos. An alternative storage organization for ROLAP aggregate views based on cubetrees. InProc. Int. Conf. on Management of Data (SIGMOD), pages 249–258, 1998.

    Google Scholar 

  14. N. Pendse and R. Creeth. The OLAP report.http://www.olapreport.com/Analyses.htm, 2000. Parts available online in the current edition.

  15. M. Riedewald, D. Agrawal, and A. El Abbadi. Flexible data cubes for online aggregation. Technical report, UC Santa Barbara, 2000.

    Google Scholar 

  16. M. Riedewald, D. Agrawal, and A. El Abbadi. pCube: Update-efficient online aggregation with progressive feedback and error bounds. InProc. Int. Conf. on Scientific and Statistical Database Management (SSDBM), pages 95–108, 2000.

    Google Scholar 

  17. M. Riedewald, D. Agrawal, A. El Abbadi, and R. Pajarola. Space-efficient data cubes for dynamic environments. InProc. Int. Conf. on Data Warehousing and Knowledge Discovery (DaWaK), pages 24–33, 2000.

    Google Scholar 

  18. J. R. Smith, V. Castelli, A. Jhingran, and C.-S. Li. Dynamic assembly of views in data cubes. InProc. Symp. on Principles of Database Systems (PODS), pages 274–283, 1998.

    Google Scholar 

  19. J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates of sparse data using wavelets. InProc. Int. Conf. on Management of Data (SIGMOD), pages 193–204, 1999.

    Google Scholar 

  20. J. S. Vitter, M. Wang, and B. Iyer. Data cube approximation and histograms via wavelets. InProc. Intl. Conf. on Information and Knowledge Management (CIKM), pages 96–104, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dept. of Computer Science, University of California, CA 93106, Santa Barbara, USA

    Mirek Riedewald, Divyakant Agrawal & Amr El Abbadi

Authors
  1. Mirek Riedewald

    You can also search for this author inPubMed Google Scholar

  2. Divyakant Agrawal

    You can also search for this author inPubMed Google Scholar

  3. Amr El Abbadi

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Limburg University (LUC), 3590, Diepenbeek, Belgium

    Jan Van den Bussche

  2. Department of Computer Science and Engineering, University of California, 92093-0114, La Jolla, CA, USA

    Victor Vianu

Rights and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riedewald, M., Agrawal, D., El Abbadi, A. (2001). Flexible Data Cubes for Online Aggregation. In: Van den Bussche, J., Vianu, V. (eds) Database Theory — ICDT 2001. ICDT 2001. Lecture Notes in Computer Science, vol 1973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44503-X_11

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp