Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 2528))
Included in the following conference series:
1384Accesses
Abstract
We present an orthogonal graph drawing algorithm that uses a sketchy drawing of the graph as input. While the algorithm produces an orthogonal drawing with few bends in the Kandinsky model it also preserves the general appearance of the sketch. Potential applications for this kind of drawing algorithm include the generation of schematic maps from geographic networks and interactive orthogonal graph drawing.
Partia
lly supported by DFG under grants Br 2158/1-1 and Ka 812/8-1.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
U. Brandes.Layout of Graph Visualizations. PhD thesis, University of Konstanz, 1999.http://www.ub.uni-konstanz/kops/volltexte/1999/255/.
U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout. Proc. Graph Drawing’ 97. Springer LNCS 1353:236–247, 1997.
U. Brandes and D. Wagner. Dynamic grid embedding with few bends and changes. Proc. Algorithms and Computation’ 98. Springer LNCS1533:89–98, 1998.
J. Branke. Dynamic graph drawing. InDrawing Graphs: Methods and Models, Springer LNCS Tutorial 2025:228–246, 2001.
S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. Interactive-Giotto: An algorithm for interactive orthogonal graph drawing. Proc. Graph Drawing’ 97. Springer LNCS 1353:303–308, 1997.
S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal graph drawing algorithms.Journal of Graph Algorithms and Applications, 4(3):47–74, 2000.
M. Closson, S. Gartshore, J. Johansen, and S. Wismath. Fully dynamic 3-dimensional orthogonal graph drawing.Journal of Graph Algorithms and Applications, 5(2):1–35, 2001.
G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.
H. do Nascimento and P. Eades. User hints for directed graph drawing. Proc. Graph Drawing’ 01. Springer LNCS 2265:124–138, 2002.
P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram.Proc. Compugraphics’ 91, pp. 24–33, 1991.
M. Eiglsperger, and M. Kaufmann. Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Size Proc. Graph Drawing’ 01. Springer LNCS 2265:124–138, 2002.
R. Elmasri and S. Navathe.Fundamentals of Database Systems. Addison-Wesley, 3rd ed., 2000.
U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. Proc. Graph Drawing’ 95. Springer LNCS 1027:254–266, 1996.
J. Ignatowicz. Drawing force-directed graphs using Optigraph. Proc. Graph Drawing’ 95. Springer LNCS 1027:333–336, 1996.
M. Kaufmann and D. Wagner, editors.Drawing Graphs: Methods and Models. Springer LNCS Tutorial 2025, 2001.
G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. TR 98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.
U. Lauther and A. Stübinger. Generating schematic cable plans using springembedder methods. Proc. Graph Drawing’ 01. Springer LNCS 2265:465–466, 2002.
T. Masui. Graphic object layout with interactive genetic algorithms.Proc. IEEE Visual Languages’ 92, pp. 74–87, 1992.
X. Mendonça and P. Eades. Learning aesthetics for visualization.Anais do XX Semin’ario Integrado de Software e Hardware, pp. 76–88, 1993.
A. Papakostas and I. G. Tollis. Issues in interactive orthogonal graph drawing. Proc. Graph Drawing’ 95. Springer LNCS 1027:419–430, 1996.
G. Paris. Cooperation between interactive actions and automatic drawing in a schematic editor. Proc. Graph Drawing’ 98. Springer LNCS 1547:394–402, 1998.
K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing graphs. Proc. Graph Drawing’ 96. Springer LNCS 1190:387–394, 1997.
R. Tamassia. On embedding a graph in the grid with the minimum number of bends.SIAM Journal on Computing, 16(3):421–444, 1987.
R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization and automatic layout of graphs. Proc. Graph Drawing’ 01. Springer LNCS 2265:453–454, 2002.
Author information
Authors and Affiliations
Department of Computer & Information Science, University of Konstanz, Konstanz
Ulrik Brandes & Dorothea Wagner
Wilhelm Schickard Institute for Computer Science, University of Tüngen, Tüngen
Markus Eiglsperger & Michael Kaufmann
- Ulrik Brandes
You can also search for this author inPubMed Google Scholar
- Markus Eiglsperger
You can also search for this author inPubMed Google Scholar
- Michael Kaufmann
You can also search for this author inPubMed Google Scholar
- Dorothea Wagner
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Department of Information and Computer Science, University of California at Irvine, CA 92697-3425, Irvine, USA
Michael T. Goodrich
Department of Computer Science, University of Arizona, AZ 85721-0077, Tucson, USA
Stephen G. Kobourov
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D. (2002). Sketch-Driven Orthogonal Graph Drawing. In: Goodrich, M.T., Kobourov, S.G. (eds) Graph Drawing. GD 2002. Lecture Notes in Computer Science, vol 2528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36151-0_1
Download citation
Published:
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-00158-4
Online ISBN:978-3-540-36151-0
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative