Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Sketch-Driven Orthogonal Graph Drawing

  • Conference paper
  • First Online:
Graph Drawing(GD 2002)

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 2528))

Included in the following conference series:

  • 1384Accesses

Abstract

We present an orthogonal graph drawing algorithm that uses a sketchy drawing of the graph as input. While the algorithm produces an orthogonal drawing with few bends in the Kandinsky model it also preserves the general appearance of the sketch. Potential applications for this kind of drawing algorithm include the generation of schematic maps from geographic networks and interactive orthogonal graph drawing.

Partia

lly supported by DFG under grants Br 2158/1-1 and Ka 812/8-1.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. U. Brandes.Layout of Graph Visualizations. PhD thesis, University of Konstanz, 1999.http://www.ub.uni-konstanz/kops/volltexte/1999/255/.

  2. U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout. Proc. Graph Drawing’ 97. Springer LNCS 1353:236–247, 1997.

    Google Scholar 

  3. U. Brandes and D. Wagner. Dynamic grid embedding with few bends and changes. Proc. Algorithms and Computation’ 98. Springer LNCS1533:89–98, 1998.

    Google Scholar 

  4. J. Branke. Dynamic graph drawing. InDrawing Graphs: Methods and Models, Springer LNCS Tutorial 2025:228–246, 2001.

    Chapter  Google Scholar 

  5. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. Interactive-Giotto: An algorithm for interactive orthogonal graph drawing. Proc. Graph Drawing’ 97. Springer LNCS 1353:303–308, 1997.

    Google Scholar 

  6. S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal graph drawing algorithms.Journal of Graph Algorithms and Applications, 4(3):47–74, 2000.

    MATH MathSciNet  Google Scholar 

  7. M. Closson, S. Gartshore, J. Johansen, and S. Wismath. Fully dynamic 3-dimensional orthogonal graph drawing.Journal of Graph Algorithms and Applications, 5(2):1–35, 2001.

    MathSciNet  Google Scholar 

  8. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

    Google Scholar 

  9. H. do Nascimento and P. Eades. User hints for directed graph drawing. Proc. Graph Drawing’ 01. Springer LNCS 2265:124–138, 2002.

    Google Scholar 

  10. P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram.Proc. Compugraphics’ 91, pp. 24–33, 1991.

    Google Scholar 

  11. M. Eiglsperger, and M. Kaufmann. Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Size Proc. Graph Drawing’ 01. Springer LNCS 2265:124–138, 2002.

    Google Scholar 

  12. R. Elmasri and S. Navathe.Fundamentals of Database Systems. Addison-Wesley, 3rd ed., 2000.

    Google Scholar 

  13. U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. Proc. Graph Drawing’ 95. Springer LNCS 1027:254–266, 1996.

    Google Scholar 

  14. J. Ignatowicz. Drawing force-directed graphs using Optigraph. Proc. Graph Drawing’ 95. Springer LNCS 1027:333–336, 1996.

    Google Scholar 

  15. M. Kaufmann and D. Wagner, editors.Drawing Graphs: Methods and Models. Springer LNCS Tutorial 2025, 2001.

    MATH  Google Scholar 

  16. G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. TR 98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.

    Google Scholar 

  17. U. Lauther and A. Stübinger. Generating schematic cable plans using springembedder methods. Proc. Graph Drawing’ 01. Springer LNCS 2265:465–466, 2002.

    Google Scholar 

  18. T. Masui. Graphic object layout with interactive genetic algorithms.Proc. IEEE Visual Languages’ 92, pp. 74–87, 1992.

    Google Scholar 

  19. X. Mendonça and P. Eades. Learning aesthetics for visualization.Anais do XX Semin’ario Integrado de Software e Hardware, pp. 76–88, 1993.

    Google Scholar 

  20. A. Papakostas and I. G. Tollis. Issues in interactive orthogonal graph drawing. Proc. Graph Drawing’ 95. Springer LNCS 1027:419–430, 1996.

    Google Scholar 

  21. G. Paris. Cooperation between interactive actions and automatic drawing in a schematic editor. Proc. Graph Drawing’ 98. Springer LNCS 1547:394–402, 1998.

    Google Scholar 

  22. K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing graphs. Proc. Graph Drawing’ 96. Springer LNCS 1190:387–394, 1997.

    Google Scholar 

  23. R. Tamassia. On embedding a graph in the grid with the minimum number of bends.SIAM Journal on Computing, 16(3):421–444, 1987.

    Article MATH MathSciNet  Google Scholar 

  24. R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization and automatic layout of graphs. Proc. Graph Drawing’ 01. Springer LNCS 2265:453–454, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer & Information Science, University of Konstanz, Konstanz

    Ulrik Brandes & Dorothea Wagner

  2. Wilhelm Schickard Institute for Computer Science, University of Tüngen, Tüngen

    Markus Eiglsperger & Michael Kaufmann

Authors
  1. Ulrik Brandes

    You can also search for this author inPubMed Google Scholar

  2. Markus Eiglsperger

    You can also search for this author inPubMed Google Scholar

  3. Michael Kaufmann

    You can also search for this author inPubMed Google Scholar

  4. Dorothea Wagner

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Information and Computer Science, University of California at Irvine, CA 92697-3425, Irvine, USA

    Michael T. Goodrich

  2. Department of Computer Science, University of Arizona, AZ 85721-0077, Tucson, USA

    Stephen G. Kobourov

Rights and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D. (2002). Sketch-Driven Orthogonal Graph Drawing. In: Goodrich, M.T., Kobourov, S.G. (eds) Graph Drawing. GD 2002. Lecture Notes in Computer Science, vol 2528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36151-0_1

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp