Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Framework for Splitting BDI Agents

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 2514))

  • 316Accesses

Abstract

Agent splitting is useful in at least three fields. In mobile computing, it’s more reasonable to transfer smarter and smaller clones of an agent rather than the bulky agent itself. In agent teamwork field, it can be used as the basis for modeling the shared mental state of team-based agents. In Multi-Agent systems, it can be embedded as a built-in load-balancing mechanism. Based on a simple BDI agent model, this paper studies how to split BDI agents logically while preserving the implicit information chains.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet functions for contraction and revision.Journal of symbolic Logic 50, 510–530, 1985.

    Article MATH MathSciNet  Google Scholar 

  2. Bardou, D., Dony C.: Split Objects: a Disciplined Use of Delegation within Objects. In: Proc. of OOPSLA’96. San Jose, California, USA.ACM SIGPLAN Notices, 31(10), 122–137, 1996.

    Article  Google Scholar 

  3. Chambers, C., Ungar, D.: Iterative type analysis and extended message splitting. In: Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation, pages 150–160, 1990.

    Google Scholar 

  4. Cooper, K.D., Hall, M.W., Kennedy, K.: A methodology for procedure cloning.Computer Languages, 19(2), 105–118, 1993.

    Article MATH  Google Scholar 

  5. Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M.Y.:Reasoning About Knowledge. MIT Press, 1995.

    Google Scholar 

  6. Friedman, N., Halpern, J.Y.: Belief revision: a critique.Journal of Logic, Language, and Information 8, pp. 401–420, 1999.

    Article MATH MathSciNet  Google Scholar 

  7. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge M.: The Belief-Desire-Intention Model of Agency. In Muller, J.P., Singh, M., Rao, A. (eds.): Intelligent Agents V, Lecture Notes in AI, Vol. 1365. Springer-Verlag, March 1999.

    Google Scholar 

  8. Konolige, K.: A deduction model of belief. Pitman Publishing: London and Morgan Kaufmann: San Mateo, CA. 1986.

    Google Scholar 

  9. Kotz, D., Gray, R.: Mobile Agents and the Future of the Internet.ACM Operating Systems Review, 33(3), 7–13, 1999.

    Article  Google Scholar 

  10. Lehmann, D.: Belief revision, revised. InIJCAI’95, pp. 1534–1540, 1995.

    Google Scholar 

  11. Rao, A.S.: Decision procedures for propositional linear-time belief-desire-intention logics. In: IJCAI’95 Workshop (ATAL), LNAI 1037, pages 33–48, Montreal, Canada, 1995.

    Google Scholar 

  12. Stone, P., and Veloso, M.: Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time strategic teamwork.Artificial Intelligence, pp. 110: 241–273, 1999.

    Article MATH  Google Scholar 

  13. Tambe, M., Pynadath, D.V., Chauvat, N.: Building Dynamic Agent Organizations in Cyberspace.IEEE Internet Computing, 4(2):65–73, March/April, 2000.

    Google Scholar 

  14. Wassermann, R.: On Structured Belief Bases-A Preliminary Report. Presented at the 7th International Workshop on Nonmonotonic Reasoning, Trento, 1998.

    Google Scholar 

  15. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice.The Knowledge Engineering Review, 10(2), 115–152, 1995.

    Article  Google Scholar 

  16. Wooldridge, M.: Time, Knowledge, and Choice. In Wooldridge, M., Mueller, J.P., Tambe, M. (eds.): Intelligent Agents, Vol. II, Springer-Verlag, 1996.

    Google Scholar 

  17. Yen, J., Fan, X., and Volz, R.A.: On proactive Delivery of Needed Information to Teammates. In: Proc. of Workshop on Teamwork and Coalition Formation at AAMAS’02, pp. 53–61, July, Italy, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Information Sciences and Technology, Penn State University, University Park, PA, 16802

    Xiaocong Fan & John Yen

Authors
  1. Xiaocong Fan

    You can also search for this author inPubMed Google Scholar

  2. John Yen

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Abteilung für Theoretische Informatik, Institut für Algebra und Diskrete Mathematik, Wiedner Hauptstr. 8-10, 1040, Wien, Austria

    Matthias Baaz

  2. Department of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13, 9PL, UK

    Andrei Voronkov

Rights and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, X., Yen, J. (2002). A Framework for Splitting BDI Agents. In: Baaz, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2002. Lecture Notes in Computer Science(), vol 2514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36078-6_11

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp