Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Linguistic Estimation of Topic Difficulty in Cross-Language Image Retrieval

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNISA,volume 4022))

  • 422Accesses

Abstract

Selecting suitable topics in order to assess system effectiveness is a crucial part of any benchmark, particularly those for retrieval systems. This includes establishing a range of example search requests (or topics) in order to test various aspects of the retrieval systems under evaluation. In order to assist with selecting topics, we present a measure of topic difficulty for cross-language image retrieval. This measure has enabled us to ground the topic generation process within a methodical and reliable framework for ImageCLEF 2005. This document describes such a measure for topic difficulty, providing concrete examples for every aspect of topic complexity and an analysis of topics used in the ImageCLEF 2003, 2004 and 2005 ad-hoc task.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clough, P., Sanderson, M., Reid, N.: The Eurovision St Andrews Photographic Collection (ESTA), Image CLEF Report, University of Sheffield, UK (February 2003)

    Google Scholar 

  2. Grubinger, M., Leung, C.: A Benchmark for Performance Calibration in Visual Informa-tion Search. In: Proceedings of 2003 Conference of Visual Information Systems, Miami, Florida, USA, September 24-26, pp. 414–419 (2003)

    Google Scholar 

  3. Leung, C., Ip, H.: Benchmarking for Content-Based Visual Information Search. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 442–456. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Müller, H., Müller, W., Squire, D., Marchand-Millet, S., Pun, T.: Performance Evaluation in Content Based Image Retrieval: Overview and Proposals. Pattern Recognition Letters 22(5), 563–601 (2001)

    Article  Google Scholar 

  5. Clough, P., Sanderson, M.: The CLEF 2003 Cross Language Image Retrieval Track. In: Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 581–593. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Clough, P., Müller, H., Sanderson, M.: Overview of the CLEF cross-language image re-trieval track (ImageCLEF) 2004. In: Peters, C., Clough, P.D., Jones, G.J.F., Gonzalo, J., Kluck, M., Magnini, B. (eds.) Multilingual Information Access for Text, Speech and Im-ages: Result of the fifth CLEF evaluation campaign. LNCS, Springer, England (2005)

    Google Scholar 

  7. Armitage, L., Enser, P.: Analysis of User Need in Image Archives. Journal of Information Science 23(4), 287–299 (1997)

    Article  Google Scholar 

  8. Bagga, A., Biermann, A.: Analysing the complexity of a domain with respect to an infor-mation extraction task. In: Proceedings of the tenth International Conference on Research on Computational Linguistics (ROCLING X), August 1997, pp. 175–194 (1997)

    Google Scholar 

  9. Niyogi, P.: The Informational Complexity of Learning from Examples. PhD Thesis, MIT (1996)

    Google Scholar 

  10. Barton, E., Berwick, R., Ristad, E.: Computational Complexity and Natural Language. The MIT Press, Cambridge (1987)

    Google Scholar 

  11. Ristad, E.: The Language Complexity Games. MIT Press, Cambridge (1993)

    Google Scholar 

  12. Flank, S.: Sentences vs. Phrases: Syntactic Complexity in Multimedia Information Retrieval. In: NAACL-ANLP 2000 Workshop: Syntactic and Semantic Complexity in Natural Language Processing Systems (2000)

    Google Scholar 

  13. Pollard, S., Biermann, A.: A Measure of Semantic Complexity for Natural Language Systems. In: NAACL-ANLP 2000 Workshop: Syntactic and Semantic Complexity in Natural Language Processing Systems (2000)

    Google Scholar 

  14. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting Query Performance. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Develop-ment in Information Retrieval 2002, pp. 299–306. ACM Press, New York (2002)

    Chapter  Google Scholar 

  15. Amati, G., Carpineto, C., Romano, G.: Query Difficulty, Robustness, and Selective Application of Query Expansion. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 127–137. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Yom-Tov, E., Fine, S., Carmel, D., Darlow, A.: Learning to Estimate Query Difficulty. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval 2005, ACM Press, New York (2005)

    Google Scholar 

  17. Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T., Jensen, J., Hersh, W.: The CLEF 2005 Cross–Language Image Retrieval Track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Clough, P.D., Sanderson, M.: Assessing Translation Quality for Cross Language Image Retrieval. In: Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 594–610. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Computer Science and Mathematics, Victoria University, Melbourne, Australia

    Michael Grubinger & Clement Leung

  2. Department of Information Studies, Sheffield University, Sheffield, UK

    Paul Clough

Authors
  1. Michael Grubinger

    You can also search for this author inPubMed Google Scholar

  2. Clement Leung

    You can also search for this author inPubMed Google Scholar

  3. Paul Clough

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. ISTI-CNR, Area di Ricerca, Pisa, Italy

    Carol Peters

  2. University of California, Berkeley, CA, USA

    Fredric C. Gey

  3. No Affiliations,  

    Julio Gonzalo

  4. Business Information Systems, University of Applied Sciences, Sierre, Switzerland

    Henning Müller

  5. Centre for Digital Video Processing & School of Computing, Dublin City University, Dublin 9, Ireland

    Gareth J. F. Jones

  6. German Institute for International and Security Affairs, Stiftung Wissenschaft und Politik (SWP), Ludwigkirchplatz 3-4, 10719, Berlin, Germany

    Michael Kluck

  7. ITC-IRST, Trento, Italy

    Bernardo Magnini

  8. ISLA, University of Amsterdam,  

    Maarten de Rijke

Rights and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grubinger, M., Leung, C., Clough, P. (2006). Linguistic Estimation of Topic Difficulty in Cross-Language Image Retrieval. In: Peters, C.,et al. Accessing Multilingual Information Repositories. CLEF 2005. Lecture Notes in Computer Science, vol 4022. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11878773_61

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp