Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Log-Euclidean Framework for Statistics on Diffeomorphisms

  • Conference paper

Abstract

In this article, we focus on the computation of statistics of invertible geometrical deformations (i.e., diffeomorphisms), based on the generalization to this type of data of the notion ofprincipal logarithm. Remarkably, this logarithm is a simple 3D vector field, and is well-defined for diffeomorphisms close enough to the identity. This allows to performvectorial statistics on diffeomorphisms, while preserving the invertibility constraint, contrary to Euclidean statistics on displacement fields. We also present here two efficient algorithms to compute logarithms of diffeomorphisms and exponentials of vector fields, whose accuracy is studied on synthetic data. Finally, we apply these tools to compute the mean of a set of diffeomorphisms, in the context of a registration experiment between an atlas an a database of 9 T1 MR images of the human brain.

Similar content being viewed by others

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A Log-Euclidean polyaffine framework for locally rigid or affine registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 120–127. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on tensors in the Log-Euclidean framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. Jour. Comp. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  4. Camion, V., Younes, L.: Geodesic interpolating splines. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 513–527. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Chefd’hotel, C., Hermosillo, G., Faugeras, O.: Flows of diffeomorphisms for multimodal image registration. In: Proc. of ISBI (2002)

    Google Scholar 

  6. Commowick, O., Stefanescu, R., Fillard, P., Arsigny, V., Ayache, N., Pennec, X., Malandain, G.: Incorporating Statistical Measures of Anatomical Variability in Atlas-to-Subject Registration for Conformal Brain Radiotherapy. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 927–934. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005)

    Article MATH MathSciNet  Google Scholar 

  8. Marsland, S., Twining, C.J.: Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images. IEEE Trans. Med. Imaging 23(8), 1006–1020 (2004)

    Article  Google Scholar 

  9. Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., Ayache, N.: Riemannian Elasticity: A Statistical Regularization Framework for Non-linear Registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 943–950. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3D statistical deformation models of the brain using non-rigid registration. IEEE TMI 22(8), 1014–1025 (2003)

    Google Scholar 

  11. Stefanescu, R., Pennec, X., Ayache, N.: Grid powered nonlinear image registration with locally adaptive regularization. MedI. A 88(3), 325–342 (2004)

    Google Scholar 

  12. Sternberg, S.: Lectures on Differential Geometry. Prentice Hall Mathematics Series. Prentice Hall Inc., Englewood Cliffs (1964)

    MATH  Google Scholar 

  13. Tenenbaum, M., Pollard, H.: Ordinary Differential Equations. Dover (1985)

    Google Scholar 

  14. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. International Journal of Computer Vision 28(3), 213–221 (1998)

    Article  Google Scholar 

  15. Vaillant, M., Miller, M.I., Younes, L., Trouvé, A.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23, S161–S169 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INRIA Sophia – Epidaure Project, 2004 Route des Lucioles, BP 93, 06902 Cedex, Sophia Antipolis, France

    Vincent Arsigny, Olivier Commowick, Xavier Pennec & Nicholas Ayache

  2. DOSISoft S.A., 45 Avenue Carnot, 94 230, Cachan, France

    Olivier Commowick

Authors
  1. Vincent Arsigny

    You can also search for this author inPubMed Google Scholar

  2. Olivier Commowick

    You can also search for this author inPubMed Google Scholar

  3. Xavier Pennec

    You can also search for this author inPubMed Google Scholar

  4. Nicholas Ayache

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Informatics and Mathematical Modelling, Technical University of Denmark, Denmark

    Rasmus Larsen

  2. Nordic Bioscience, Herlev, Denmark

    Mads Nielsen

  3. Department of Computer Science, University of Copenhagen, Denmark

    Jon Sporring

Rights and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arsigny, V., Commowick, O., Pennec, X., Ayache, N. (2006). A Log-Euclidean Framework for Statistics on Diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. MICCAI 2006. Lecture Notes in Computer Science, vol 4190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11866565_113

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp