Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 4228))
Included in the following conference series:
704Accesses
Abstract
We present a generic symbolic analysis framework for imperative programming languages. Our framework is capable of computing all valid variable bindings of a program at given program points. This information is invaluable for domain-specific static program analyses such as memory leak detection, program parallelisation, and the detection of superfluous bound checks, variable aliases and task deadlocks.
We employ path expression algebra to model the control flow information of programs. A homomorphism maps path expressions into the symbolic domain. At the center of the symbolic domain is a compact algebraic structure called supercontext. A supercontext contains the complete control and data flow analysis information valid at a given program point.
Our approach to compute supercontexts is based purely on algebra and is fully automated. This novel representation of program semantics closes the gap between program analysis and computer algebra systems, which makes supercontexts an ideal intermediate representation for all domain-specific static program analyses.
Our approach is more general than existing methods because it can derive solutions for arbitrary (even intra-loop) nodes of reducible and irreducible control flow graphs. We prove the correctness of our symbolic analysis method. Our experimental results show that the problem sizes arising from real-world applications such as the SPEC95 benchmark suite are tractable for our symbolic analysis framework.
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V., Sethi, R., Ullman, J.D.: Compilers—Principles, Techniques, and Tools. Addison-Wesley, Reading (1986)
Bachmann, O., Wang, P.S., Zima, E.V.: Chains of Recurrences — A Method to Expedite the Evaluation of Closed-Form Functions. In: Proc. of the Internat. Symposium on Symbolic and Algebraic Computation, pp. 242–249. ACM Press, New York (1994)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, New York (1998)
Blieberger, J.: Data-Flow Frameworks for Worst-Case Execution Time Analysis. Real-Time Systems 22, 183–227 (2002)
Blieberger, J.: Discrete Loops and Worst Case Performance. Computer Languages 20(3), 193–212 (1994)
Blieberger, J., Burgstaller, B., Scholz, B.: Interprocedural Symbolic Evaluation of Ada Programs with Aliases. In: González Harbour, M., la de Puente, J.A. (eds.) Ada-Europe 1999. LNCS, vol. 1622, pp. 136–145. Springer, Heidelberg (1999)
Blieberger, J., Burgstaller, B., Scholz, B.: Symbolic Data Flow Analysis for Detecting Deadlocks in Ada Tasking Programs. In: Keller, H.B., Plödereder, E. (eds.) Ada-Europe 2000. LNCS, vol. 1845, pp. 225–237. Springer, Heidelberg (2000)
Blieberger, J., Fahringer, T., Scholz, B.: Symbolic Cache Analysis for Real-Time Systems. Real-Time Systems 18(2/3), 181–215 (2000)
Burgstaller, B., Blieberger, J., Mittermayr, R.: Static Detection of Access Anomalies in Ada95. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe 2006. LNCS, vol. 4006, pp. 40–55. Springer, Heidelberg (2006)
Blume, W., Eigenmann, R.: Nonlinear and Symbolic Data Dependence Testing. IEEE Transactions on Parallel and Distributed Systems 9(12), 1180–1194 (1998)
Burgstaller, B.: Symbolic Evaluation of Imperative Programming Languages. Technical Report 183/1-138, Department of Automation, Vienna University of Technology (June 2005),http://www.auto.tuwien.ac.at/~bburg/reports.html
Burgstaller, B., Scholz, B., Blieberger, J.: Tour de Spec — A Collection of Spec95 Program Paths and Associated Costs for Symbolic Evaluation. Technical Report 183/1-137, Department of Automation, Vienna University of Technology (June 2004),http://www.auto.tuwien.ac.at/~bburg/reports.html
Blieberger, J., Burgstaller, B.: Eliminating Redundant Range Checks in GNAT Using Symbolic Evaluation. In: Proc. of the Ada-Europe International Conference on Reliable Software Technologies, Toulouse, France, pp. 153–167 (June 2003)
Clarke, L.A., Richardson, D.J.: Symbolic Evaluation Methods for Program Analysis. In: Muchnick, S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applications, pp. 264–300. Prentice-Hall, Englewood Cliffs (1981)
Cousot, P., Cousot, R.: Abstract Intrepretation: a Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of POPL, pp. 238–252 (January 1977)
Fahringer, T., Scholz, B.: Advanced Symbolic Analysis for Compilers. In: Fahringer, T., Scholz, B. (eds.) Advanced Symbolic Analysis for Compilers. LNCS, vol. 2628. Springer, Heidelberg (2003)
Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Dordrecht (1992)
Gerlek, M.P., Stoltz, E., Wolfe, M.: Beyond Induction Variables: Detecting and Classifying Sequences Using a Demand-Driven SSA Form. TOPLAS 17(1), 85–122 (1995)
Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.: Introducing OBJ. Draft, Oxford University Computing Laboratory, Oxford (1993)
Greene, D., Knuth, D.E.: Mathematics For the Analysis of Algorithms, 2nd edn. Birkhäuser, Basel (1982)
Haghighat, M.R., Polychronopoulos, C.D.: Symbolic Analysis for Parallelizing Compilers. TOPLAS 18(4), 477–518 (1996)
Havlak, P.: Interprocedural Symbolic Analysis. Ph.D thesis, Dept. of Computer Science, Rice University (May 1994)
Hecht, M.S.: Flow Analysis of Computer Programs. Elsevier, Amsterdam (1977)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)
Lueker, G.S.: Some Techniques for Solving Recurrences. ACM Computing Surveys (CSUR) 12(4), 419–436 (1980)
Menon, V., Pingali, K., Mateev, N.: Fractal Symbolic Analysis. TOPLAS 25(6), 776–813 (2003)
Pugh, W.: The Omega Test: A Fast and Practical Integer Programming Algorithm for Dependence Analysis. Communications of the ACM 35(8), 102–114 (1992)
Pugh, W.: Counting Solutions To Presburger Formulas: How and Why. In: Proc. of PLDI, pp. 121–134 (1994)
Pugh, W., Wonnacott, D.: Nonlinear Array Dependence Analysis. Technical report, College Park, MD, USA (1994)
Rugina, R., Rinard, M.: Symbolic Bounds Analysis of Pointers, Array Indices, and Accessed Memory Regions. In: Proc. of PLDI, pp. 182–195 (2000)
Scholz, B., Blieberger, J., Fahringer, T.: Symbolic Pointer Analysis for Detecting Memory Leaks. In: ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM 2000), Boston (January 2000)
SPEC CPU95 Benchmark Suite, Version 1.10 (August 1995)
Tarjan, R.E.: A Unified Approach to Path Problems. Journal of the ACM 28(3), 577–593 (1981)
Tu, P., Padua, D.A.: Gated SAA-Based Demand-Driven Symbolic Analysis for Parallelizing Compilers. In: International Conference on Supercomputing, pp. 414–423 (1995)
van Engelen, R.A.: The CR# Algebra and its Application in Loop Analysis and Optimization. Technical Report TR-041223, Department of Computer Science, Florida State University (December 2004)
van Engelen, R.A., Birch, J., Shou, Y., Walsh, B., Gallivan, K.A.: A Unified Framework for Nonlinear Dependence Testing and Symbolic Analysis. In: ICS 2004: Proc. of the 18th Annual International Conference on Supercomputing, pp. 106–115. ACM Press, New York (2004)
Wolfram, S.: The Mathematica Book. Wolfram Media, Incorporated (2003)
Zima, E.V.: Simplification and Optimization Transformations of Chains of Recurrences. In: ISSAC 1995: Proc. of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 42–50. ACM Press, New York (1995)
Zima, H., Chapman, B.: Supercompilers for Parallel and Vector Computers. ACM Press, New York (1991)
Author information
Authors and Affiliations
The University of Sydney,
Bernd Burgstaller & Bernhard Scholz
Technical University of Vienna,
Johann Blieberger
- Bernd Burgstaller
You can also search for this author inPubMed Google Scholar
- Bernhard Scholz
You can also search for this author inPubMed Google Scholar
- Johann Blieberger
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
School of Technology, Department of Computing, Oxford Brookes University, OX33 1HX, Oxford, UK
David E. Lightfoot
Microsoft, USA
Clemens Szyperski
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burgstaller, B., Scholz, B., Blieberger, J. (2006). Symbolic Analysis of Imperative Programming Languages. In: Lightfoot, D.E., Szyperski, C. (eds) Modular Programming Languages. JMLC 2006. Lecture Notes in Computer Science, vol 4228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11860990_12
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-40927-4
Online ISBN:978-3-540-40928-1
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative