Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Circuit Design Style for Energy Efficiency: LSDL and Compound Domino

  • Conference paper

Abstract

Introduction of sub-90nm technology has made a profound impact on circuit designs. Thus, it requires understanding of existing design styles for desired energy-efficiency. We compare adder designs in the energy-delay space, implemented with Limited Switch Dynamic Logic (LSDL) and Compound Domino Logic (CD) in a 65nm SOI technology. Evaluation results show that LSDL can provide more than 35% energy savings than CD with 25% switching activity at relaxed cycle times greater than 10.5 FO4.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oklobdzija, V.G., et al.: Energy-Delay Estimation Technique for High-Performance Microprocessor VLSI Adders. In: Proceedings of the International Symposium on Computer Arithmetic, ARITH-16, Santiago de Compostela, Spain, June  15-18 (2003)

    Google Scholar 

  2. Oklobdzija, V.G., et al.: Comparison of High-Performance VLSI Adders in Energy-Delay Space. IEEE Transaction on VLSI Systems 13(6), 754–758 (2005)

    Article  Google Scholar 

  3. Montoye, R., et al.: A Double Precision Floating Point Multiply, Digest of Technical Papers. In: 2003 IEEE International Solid-State Circuits Conference, San Francisco (February 2003)

    Google Scholar 

  4. Houston, T.W., et al.: Compound Domino CMOS Circuit, U.S. Patent No. 5,015,882 (Issued: May 14, 1991)

    Google Scholar 

  5. Horowitz, M.: VLSI Scaling for Architects, Presentation slides, Computer Systems Laboratory, Stanford University

    Google Scholar 

  6. Nowka, K.J.: Issues in High-Performance Processor Design. In: Oklobdzija, V.G. (ed.) The Computer Engineering Handbook. CRC Press Inc., Boca Raton (2002)

    Google Scholar 

  7. Interconnect, International Technology Roadmap for Semiconductors (ITRS) (2005)

    Google Scholar 

  8. Sutherland, I.E., Sproull, R.F.: Logical Effort: Designing for Speed on the Back of an Envelope. In: Sequin, C.H. (ed.) Advanced Research in VLSI. MIT Press, Cambridge (1991)

    Google Scholar 

  9. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Computers C-22(8), 786–793 (1973)

    Article MathSciNet  Google Scholar 

  10. Ling, H.: High-Speed Binary Adder. IBM J. Res. Dev. 25, 156–166 (1981)

    Article  Google Scholar 

  11. Park, J., et al.: 470ps 64-bit Parallel Binary Adder. In: Digest of Technical Papers of 2000 Symposium on VLSI Circuits (2000)

    Google Scholar 

  12. Mathew, S.K., et al.: Sub-500-ps 64-b ALUs in 0.18-(m SOI/bulk CMOS: design and scaling trends. IEEE Journal of Solid-State Circuits 11 (November 2001)

    Google Scholar 

  13. Mathew, S., et al.: A 4-GHZ 130-nm address generation unit with 32-bit sparse-tree adder core. IEEE Journal of Solid-State Circuits 38(5) (May 2003)

    Google Scholar 

  14. Mathew, S., et al.: A 4GHZ 300mW 64b Integer Execution ALU with Dual Supply Voltage in 90nm CMOS. Digest of Technical Papers of 2004 IEEE International Solid-State Circuit Conference, San Francisco (February 2004)

    Google Scholar 

  15. Shimazaki, Y., et al.: A shared-well dual-supply-voltage 64-bit ALU. IEEE Journal of Solid-State Circuits 39(3) (March 2004)

    Google Scholar 

  16. Zeydel, B.R., et al.: Efficient Mapping of Addition Recurrence Algorithms in CMOS. In: 17th IEEE Symposium on Computer Arithmetic, June 27-29 (2005)

    Google Scholar 

  17. Dimitrakopoulos, G., Nikolos, D.: High Speed Parallel-Prefix VLSI Ling Adders. IEEE Transactions on Computers (February 2005)

    Google Scholar 

  18. Averill, R.M., et al.: Chip Integration Methodology for the IBM S/390 G5 and G6 Custom Microprocessors. IBM Journal of Research and Development 43(5/6) (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. IBM Poughkeepsie, 2455 South Rd, Poughkeepsie, NY, 12601, USA

    Xiao Yan Yu

  2. IBM T.J. Watson Research Center, 1101 Kitchawan Rd, Route 134, Yorktown Heights, NY, 10598, USA

    Robert Montoye

  3. IBM Austin Research Laboratory, 11501 Burnet Rd, Austin, TX, 78758, USA

    Kevin Nowka

  4. ACSEL Laboratory, University of California, Davis, CA, 95616, USA

    Xiao Yan Yu, Bart Zeydel & Vojin Oklobdzija

Authors
  1. Xiao Yan Yu

    You can also search for this author inPubMed Google Scholar

  2. Robert Montoye

    You can also search for this author inPubMed Google Scholar

  3. Kevin Nowka

    You can also search for this author inPubMed Google Scholar

  4. Bart Zeydel

    You can also search for this author inPubMed Google Scholar

  5. Vojin Oklobdzija

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. IMEC, Kapeldreef 75, 3001, Heverlee, Belgium

    Johan Vounckx

  2. LIRMM, UMR CNRS/Université de Montpellier II, (C5506), 161 rue Ada, 34392, Montpellier, France

    Nadine Azemard

  3. University of Montpellier / LIRMM, II, 161 rue Ada, 34392, Montpellier, France

    Philippe Maurine

Rights and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, X.Y., Montoye, R., Nowka, K., Zeydel, B., Oklobdzija, V. (2006). Circuit Design Style for Energy Efficiency: LSDL and Compound Domino. In: Vounckx, J., Azemard, N., Maurine, P. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2006. Lecture Notes in Computer Science, vol 4148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847083_5

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp