Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 4193))

Included in the following conference series:

  • 2402Accesses

Abstract

Although a number of multiobjective evolutionary algorithms have been proposed over the last two decades, not much effort has been made to deal with variable linkages in multiobjective optimization. Recently, we have suggested a general framework of multiobjective evolutionary algorithms based on decomposition (MOEA/D) [1]. MOEA/D decomposes a MOP into a number of scalar optimization subproblems by a conventional decomposition method. The optimal solution to each of these problems is a Pareto optimal solution to the MOP under consideration. An appropriate decomposition could make these individual Pareto solutions evenly distribute along the Pareto optimal front. MOEA/D aims at solving these scalar optimization subproblems simultaneously. In this paper, we propose, under the framework of MOEA/D, a multiobjective differential evolution based decomposition (MODE/D) for tackling variable linkages. Our experimental results show that MODE/D outperforms several other MOEAs on several test problems with variable linkages.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, Q., Li, H.: A multiobjective evolutionary algorithm based on decomposition. Technical Report CSM-450, Department of Computer Science, University of Essex (2006)

    Google Scholar 

  2. Deb, K., Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., Chichester (2001)

    MATH  Google Scholar 

  3. Coello, C.A.C.: Recent trends in evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization: Theoretical Advances And Applications, pp. 7–32. Springer, London (2005)

    Chapter  Google Scholar 

  4. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evolutionary Computation 7(2), 174–188 (2003)

    Article  Google Scholar 

  5. Knowles, J.D., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evolutionary Computation 7(2), 100–116 (2003)

    Article  Google Scholar 

  6. Deb, K., Sinha, A., Kukkonen, S.: Multi-objective test problems, linkages, and evolutionary methodologies. Technical Report KanGAL Report No. 2006001, KanGAL, Indian Institute of Technology Kanpur (2006)

    Google Scholar 

  7. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  8. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation 7(3), 205–230 (1999)

    Article  Google Scholar 

  9. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  10. Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On test functions for evolutionary multi-objective optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 792–802. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

  13. Iorio, A., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: Australian Conference on Artificial Intelligence, Cairns, Australia. LNCS, pp. 861–872. Springer, Heidelberg (2004)

    Google Scholar 

  14. Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. In: CEC 2005, Edinburgh, Scotland, pp. 443–450. IEEE Service Center (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom

    Hui Li & Qingfu Zhang

Authors
  1. Hui Li

    You can also search for this author inPubMed Google Scholar

  2. Qingfu Zhang

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Science Institute, University of Iceland, P.O. Box, Iceland

    Thomas Philip Runarsson

  2. Vorarlberg University of Applied Sciences, Hochschulstr. 1, A-6850, Dornbirn, Austria

    Hans-Georg Beyer

  3. Automated Scheduling, Optimisation and Planning Group, School of Computer Science & IT, University of Nottingham, NG8 1BB, Nottingham, UK

    Edmund Burke

  4. Depto. Arquitectura y Tecnologa de Computadores, ETS Ingeiera Informtica, C/Daniel Saucedo Aranda, s/n, 18071, Granada, Spain

    Juan J. Merelo-Guervós

  5. Colorado State University, 80523, Fort Collins, CO, USA

    L. Darrell Whitley

  6. University of Birmingham, Birmingham, UK

    Xin Yao

Rights and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Zhang, Q. (2006). A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_59

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp