Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 4162))
Included in the following conference series:
1087Accesses
Abstract
In this paper we study the notion of aDouble-Round NIZ- KPK in the SRS model. In a Double-Round NIZKPK prover and verifier have access to the same random string Σ and, in addition, the prover is allowed to send one message to the verifier before Σ is made available. The verifier needs not to reply to this message. The random string and initial prover message can then be used in any polynomial number of proofs each consisting of a single message.
We show how to construct Double-Roundnon-malleable NIZKPKs in the SRS model by only requiring the existence ofone-way trapdoor permutations. In contrast, regular NIZKPKs require the existence of cryptosystems with an extra density property, called dense secure cryptosystems. We then show that Double-Round NIZKPKs can replace one-round NIZKPKs in the design of secure protocols. The replacement has no significant effect on the round complexity of the larger protocol but it removes the need of the existence of dense secure cryptosystems. We give examples of cryptographic constructions that use one-round NIZKPKs and that are improved when using Double-Round NIZKPKs: 1) the construction of 3-round resettable zero-knowledge arguments in the UPK model [EUROCRYPT 2001]; 2) the construction of a constant-round (n – 1)-secure simulatable coin-flipping protocol [EUROCRYPT 2003].
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barak, B.: Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared Random String Model. In: FOCS 2002, pp. 345–355 (2002)
Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally Composable Protocols with Relaxed Set-up Assumptions. In: FOCS 2004, pp. 394–403 (2004)
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Eurocrypt 2003. LNCS, vol. 2045, pp. 614–629. Springer, Heidelberg (2003)
Bellare, M., Yung, M.: Certifying cryptographic tools: The case of trapdoor permutations. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 442–460. Springer, Heidelberg (1993)
Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge. SIAM J. on Computing 20(6), 1084–1118 (1991)
De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 566. Springer, Heidelberg (2001)
De Santis, A., Di Crescenzo, G., Persiano, G.: Necessary and sufficient assumptions for non-interactive zero-knowledge proofs of knowledge for all NP relations. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 451. Springer, Heidelberg (2000)
De Santis, A., Persiano, G.: Zero-Knowledge Proofs of Knowledge Without Interaction. In: FOCS 1992, pp. 427–436 (1992)
Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM J. on Computing 30(2), 391–437 (2000)
Dwork, C., Naor, M.: Zaps and their Applications. In: FOCS 2000, pp. 283–293. IEEE Computer Society Press, Los Alamitos (2000)
Feige, U., Lapidot, D., Shamir, A.: Multiple Non-Interactive Zero Knowledge Proofs Under General Assumptions. SIAM J. on Computing 29(1), 1–28 (1999)
Feige, U., Shamir, A.: Witness Indistinguishable and Witness Hiding Protocols. In: STOC 1990, pp. 416–426. ACM, New York (1990)
Goldreich, O., Levin, L.: A Hard-Core Predicate for all One-Way Functions. In: STOC 1989, pp. 25–32 (1989)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. JACM 38(3), 691–729 (1991)
Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-Party Computation with a Dishonest Majority. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 578–595. Springer, Heidelberg (2001)
Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggregate Signatures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)
MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer, Heidelberg (2004)
Micali, S., Reyzin, L.: Min-Round Resettable Zero-Knowledge in the Public-key Model. In: Pfitzmann, B. (ed.) EUROCRYPT 2001, vol. 2045, pp. 373–393. Springer, Heidelberg (2001)
Ostrovsky, R., Wigderson, A.: One-Way Functions are Essential for Non-Trivial Zero Knowledge. In: ISTCS 1993, pp. 3–17. IEEE Computer Society Press, Los Alamitos (1993)
Persiano, G., Visconti, I.: On Non-Interactive Zero-Knowledge Proofs of Knowledge in the Shared Random String Model (2006) Full version, available athttp://www.dia.unisa.it/professori/visconti/dr.pdf
Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In: FOCS 1999, pp. 543–553. IEEE Computer Society Press, Los Alamitos (1993)
Author information
Authors and Affiliations
Dipartimento di Informatica ed Appl., Università di Salerno, Italy
Giuseppe Persiano & Ivan Visconti
- Giuseppe Persiano
You can also search for this author inPubMed Google Scholar
- Ivan Visconti
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Department of Computer Science, Comenius University, Mlynská dolina, 84248, Bratislava, Slovakia
Rastislav Královič
Institute of Informatics, University of Warsaw, Poland
Paweł Urzyczyn
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Persiano, G., Visconti, I. (2006). On Non-Interactive Zero-Knowledge Proofs of Knowledge in the Shared Random String Model. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_65
Download citation
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative