Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Doubly-Focused Enumeration of Pseudosquares and Pseudocubes

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

  • 1785Accesses

Abstract

This paper offers numerical evidence for a conjecture that primality proving may be done in (logN)3 + o(1) operations by examining the growth rate of quantities known as pseudosquares and pseudocubes. In the process, a novel method of solving simultaneous congruences—doubly-focused enumeration— is examined. This technique, first described by D. J. Bernstein, allowed us to obtain record-setting sieve computations in software on general purpose computers.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)

    Article MATH MathSciNet  Google Scholar 

  2. Bach, E.: Explicit bounds for primality testing and related problems. Mathematics of Computation 55(191), 355–380 (1990)

    Article MATH MathSciNet  Google Scholar 

  3. Bernstein, D.J.: More news from the Rabin-Williams front. In: Conference slides from Mathematics of Public Key Cryptography (MPKC). University of Illinois at Chicago (2003), Available from:http://cr.yp.to/talks/2003.11.08-2/slides.ps

  4. Bernstein, D.J.: Doubly Focused Enumeration Of Locally Square Polynomial Values. In: van der Poorten, A., Stein, A. (eds.) High Primes and Misdemeanors—Lectures in honour of the 60th birthday of Hugh Cowie Williams, pp. 69–76 (2004)

    Google Scholar 

  5. Bernstein, D.J.: Proving primality after Agrawal-Kayal-Saxena (unpublished, 2003), Available from:http://cr.yp.to/papers.html#aks

  6. Bernstein, D.J.: Proving primality in Essentially Quartic Random Time. Mathematics of Computation (to appear, 2004), Available from:http://cr.yp.to/papers.html#quartic

  7. Berrizbeitia, P.: Sharpening PRIMES is in P for a large family of numbers (preprint, 2002), Available from:http://arxiv.org/ps/math.NT/0211334

  8. Berrizbeitia, P., Müller, S., Williams, H.C.: Pseudocubes and Primality Testing. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 102–116. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Bronson, N.D., Buell, D.A.: Congruential sieves on FPGA computers, Mathematics of computation. In: Gautschi, W. (ed.) 1943–1993: a half-century of computational mathematics: Mathematics of Computation 50th Anniversary Symposium, Vancouver, British Columbia, August 9–13, pp. 547–551 (1994)

    Google Scholar 

  10. Cheng, Q.: Primality Proving via One Round in ECPP and One Iteration in AKS. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 338–348. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message Passing Interface. MIT Press, Cambridge (1994)

    Google Scholar 

  12. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  13. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 84. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  14. Kraitchik, M.: Récherches sur la Théorie des Nombres. Tome I Gauthier-Villars (1924)

    Google Scholar 

  15. Lehmer, D.H.: The Sieve Problem for All-Purpose Computers. Mathematical Tables and Other Aids to Computation 7(41), 6–14 (1953)

    Article MATH MathSciNet  Google Scholar 

  16. Lehmer, D.H.: The mechanical combination of linear forms. American Mathematical Monthly 35(4), 114–121 (1928)

    Article MATH MathSciNet  Google Scholar 

  17. Lehmer, D.H., Lehmer, E., Shanks, D.: Integer Sequence having Prescribed Quadratic Character. Mathematics of Computation 24(110), 433–451 (1970)

    Article MATH MathSciNet  Google Scholar 

  18. Lukes, R.F.: A Very Fast Electronic Number Sieve. Ph.D. Thesis. University of Manitoba (1995)

    Google Scholar 

  19. Lukes, R.F., Patterson, C.D., Williams, H.C.: Some results on pseudosquares. Mathematics of Computation 65(213), 361–372 (1996)

    Article MATH MathSciNet  Google Scholar 

  20. Ousterhout, J.K.: Tcl and the Tk Toolkit. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  21. Schinzel, A.: On Pseudosquares. New Trends in Probability and Statistics 4, 213–220 (1997)

    MathSciNet  Google Scholar 

  22. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292 (1971)

    Article MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Centre for Information Security and Cryptography, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada

    Kjell Wooding & Hugh C. Williams

Authors
  1. Kjell Wooding

    You can also search for this author inPubMed Google Scholar

  2. Hugh C. Williams

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Technische Universität Berlin, Germany

    Florian Hess

  2. Institut für Mathematik, MA 8–1, Technische Universität Berlin, Straße des 17. Juni 136, 10623, Berlin, Germany

    Sebastian Pauli

  3. Institut für Mathematik, Technische Universität Berlin, Fakultät II, MA 8-1, Strasse des 17. Juni 136, 10623, Berlin, Germany

    Michael Pohst

Rights and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wooding, K., Williams, H.C. (2006). Doubly-Focused Enumeration of Pseudosquares and Pseudocubes. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_16

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp