Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Object Tracking Using Genetic Evolution Based Kernel Particle Filter

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 4040))

Included in the following conference series:

Abstract

A new particle filter, which combines genetic evolution and kernel density estimation, is proposed for moving object tracking. Particle filter (PF) solves non-linear and non-Gaussian state estimation problems in Monte Carlo simulation using importance sampling. Kernel particle filter (KPF) improves the performance of PF by using density estimation of broader kernel. However, it has the problem which is similar to the impoverishment phenomenon of PF. To deal with this problem, genetic evolution is introduced to form new filter. Genetic operators can ameliorate the diversity of particles. At the same time, genetic iteration drives particles toward their close local maximum of the posterior probability. Simulation results show the performance of the proposed approach is superior to that of PF and KPF.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nummiaro, K., Koller-Meier, E., Gool, L.V.: An Adaptive Color-Based Particle Filter. Image and Vision Computing 21, 99–110 (2003)

    Article  Google Scholar 

  2. Isard, M., Blake, A.: CONDENSATION–Conditional Density Propagation for Visual Tracking. International Journal on Computer Vision 29, 5–28 (1998)

    Article  Google Scholar 

  3. http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA

  4. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50, 174–188 (2002)

    Article  Google Scholar 

  5. MacCormick, J., Blake, A.: Partitioned Sampling, Articulated Objects and Interface-quality Hand Tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. MacCormick, J., Blake, A.: A Probabilistic Exclusion Principle for Tracking Multiple Objects. In: Proceedings of International Conference on Computer Vision, pp. 572–578 (1999)

    Google Scholar 

  7. Deutscher, J., Blake, A., Reid, I.: Articulated Body Motion Capture by Annealed Particle Filtering. In: Proceedings of Computer Vision and Pattern Recognition, pp. 126–133 (2000)

    Google Scholar 

  8. Hwang, S.W., Kim, E.Y., Park, S.H.: Object Extraction and Tracking Using Genetic Algorithms. In: Proceedings of International Conference on Image Processing, pp. 383–386 (2001)

    Google Scholar 

  9. Lehn-Schioler, T., Erdogmus, D., Principe, J.C.: Parzen Particle Filters. In: Proceedings of International Conference on Acoustics, Speech, and Signal Processing, pp. 781–784 (2004)

    Google Scholar 

  10. Chang, C., Ansari, R.: Kernel Particle Filter: Iterative Sampling for Efficient Visual Tracking. In: Proceedings of International Conference on Image Processing, pp. 977–980 (2003)

    Google Scholar 

  11. Doucet, A., Freitas, N., de Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    MATH  Google Scholar 

  12. Hu, C.B., Yu, Q.F., Li, Y., Ma, S.D.: Extraction of Parametric Human Model for Posture Recognition Using Genetic Algorithm. In: Proceedings of International Conference on Automatic Face and Gesture Recognition (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departmant of Information and Electronics Engineering, Zhejiang University, Hangzhou, Zhejiang, 310013, China

    Qicong Wang & Jilin Liu

  2. College of Information & Electronics Engineering, Taizhou University, Linhai, Zhejiang, 317000, China

    Zhigang Wu

Authors
  1. Qicong Wang

    You can also search for this author inPubMed Google Scholar

  2. Jilin Liu

    You can also search for this author inPubMed Google Scholar

  3. Zhigang Wu

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Institute for Transport Research, German-Aerospace Center (DLR), Rutherfordstr. 2, 12489, Berlin, Germany

    Ralf Reulke

  2. Fachbereich Mathematik, Universität Hamburg, Bundesstr. 55, 20146, Hamburg

    Ulrich Eckardt

  3. Dresden University of Technology,  

    Boris Flach

  4. Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany

    Uwe Knauer

  5. FU Berlin, Arnimallee 3, 14195, Berlin, Germany

    Konrad Polthier

Rights and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Liu, J., Wu, Z. (2006). Object Tracking Using Genetic Evolution Based Kernel Particle Filter. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds) Combinatorial Image Analysis. IWCIA 2006. Lecture Notes in Computer Science, vol 4040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774938_37

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp