Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Blind Partial Separation of Instantaneous Mixtures of Sources

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNISA,volume 3889))

  • 3220Accesses

  • 8Citations

Abstract

We introduce a general criterion for blindly extracting a subset of sources in instantaneous mixtures. We derive the corresponding estimation equations and generalize them based on arbitrary nonlinear separating functions. A quasi-Newton algorithm for minimizing the criterion is presented, which reduces to the FastICA algorithm in the case when only one source is extracted. The asymptotic distribution of the estimator is obtained and a simulation example is provided.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  2. Pham, D.T., Garat, P.: Blind separation of mixtures of independent sources through a quasi maximum likelihood approach. IEEE Trans. Signal Processing 45, 1712–1725 (1997)

    Article MATH  Google Scholar 

  3. Pham, D.T.: Fast algorithms for mutual information based independent component analysis. IEEE Trans. on Signal Processing 52, 2690–2700 (2004)

    Article  Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book MATH  Google Scholar 

  5. Pham, D.T.: Contrast functions for blind seperation and deconvolution of sources. In: Lee, T.W., Jung, T.P., Makeig, S., Sejnowski, T.J. (eds.) Proceeding of ICA 2001 onference, San Diego, USA, pp. 37–42 (2001)

    Google Scholar 

  6. Huber, P.J.: Projection pursuit. Ann. Statist. 13, 435–475 (1985)

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratoire de Modélisation et Calcul, BP 53, 38041 Cedex, Grenoble, France

    Dinh-Tuan Antoine Pham

Authors
  1. Dinh-Tuan Antoine Pham

Editor information

Editors and Affiliations

  1. Siemens Corporate Research, 755 College Road East, 08540, Princeton, NJ, USA

    Justinian Rosca

  2. Department of CSEE, Oregon Health and Science University, Portland, Oregon, USA

    Deniz Erdogmus

  3. Dep. of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA

    José C. Príncipe

  4. McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, Ontario, Canada

    Simon Haykin

Rights and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, DT.A. (2006). Blind Partial Separation of Instantaneous Mixtures of Sources. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_108

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp