Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Hybrid Self-adjusted Memetic Algorithm for Multi-objective Optimization

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 3789))

Included in the following conference series:

  • 1524Accesses

Abstract

A novel memetic algorithm for multi-objective optimization problems is proposed in this paper. The uniqueness of the method is that it hybridizes scalarizing selection with Pareto selection for exploitation and exploration. For extending the spread of solutions as quickly and fully as possible, the scalarizing functions defined by a wide diversified set of weights are used to go through all regions in objective space in the first phase at each generation. In the second phase, for intensifying search ability and achieving global exploration, a grid-based method is used to discover the gaps on existing tradeoff surface, and a fuzzy local perturbation is employed to reproduce additional ”good” individuals in the missing areas. Both the exploitation and exploration are made dynamic and adaptive to online optimization conditions based on a function of progress ratio, ensuring better stability of the algorithm. Compared with several state-of-the-art approaches using the same set of multi-objective 0/1 knapsack problem instances, experiment results show that the proposed method perform better to some extent in terms of finding a near-Pareto front and well-extended nondominated set.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. on Evolutionary Computation 7, 174–188 (2003)

    Article  Google Scholar 

  2. Srivivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2, 221–248 (1995)

    Article  Google Scholar 

  3. Knowles, J.D., Corne, D.W.: The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, pp. 98–105 (1999)

    Google Scholar 

  4. Yang, S.M., Shao, D.G., Luo, Y.J.: A novel evolution strategy for multiobjective optimization problem. Applied Mathematics and Computation, 1–24 (2005)

    Google Scholar 

  5. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  6. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. TIK-Report 103, Switxerland (2001)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  8. Knowles, J.D., Corne, D.W.: M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 325–332 (2000)

    Google Scholar 

  9. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst., Man. & Cybern. 28, 392–403 (1998)

    Article  Google Scholar 

  10. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. on Evolutionary Computation 7, 204–223 (2003)

    Article  Google Scholar 

  11. Jaszkiewicz, A.: Genetic local search for multiple objective combinatorial optimization. European J. of Oper. Res. 137, 50–71 (2002)

    Article MATH MathSciNet  Google Scholar 

  12. Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Trans. On Evolutionary Computation 5, 565–588 (2001)

    Article  Google Scholar 

  13. Yen, G.G., Haiming, L.: Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation. IEEE Trans. on Evolutionary Computation 7, 253–274 (2003)

    Article  Google Scholar 

  14. Fieldsend, J.E., Everson, R.M., Singh, S.: Using unconstrained elite archives for multiobjective optimization. IEEE Trans. on Evolutionary Computation 7, 305–323 (2003)

    Article  Google Scholar 

  15. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. dissertation, Swiss Federal Inst. Of Technol (ETH), Zurich, Switzerland (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Automation, Shanghai Jiaotong University, Shanghai, 200030, Shanghai, P.R. China

    Xiuping Guo, Genke Yang & Zhiming Wu

Authors
  1. Xiuping Guo

    You can also search for this author inPubMed Google Scholar

  2. Genke Yang

    You can also search for this author inPubMed Google Scholar

  3. Zhiming Wu

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. National Polytechnic Institute, Center for Computing Research, 07738, Mexico City, México

    Alexander Gelbukh

  2. Technológico de Monterrey (ITESM), Campus Ciudad de México (CCM), Calle del Puente 222, Col. Ejudos de Huipulco, 14360 DF, Tlalpan, Mexico

    Álvaro de Albornoz

  3. Center for Intelligent Systems, Tecnológico de Monterrey, Campus Monterrey, 64849, Monterrey, N.L., Mexico

    Hugo Terashima-Marín

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, X., Yang, G., Wu, Z. (2005). A Hybrid Self-adjusted Memetic Algorithm for Multi-objective Optimization. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_67

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp