Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Permanency Memories in Scene Depth Analysis

  • Conference paper

Abstract

There are several strategies of how to retrieve depth information from a sequence of images, like depth from motion, depth from shading and depth from stereopsis. In this paper, we introduce a new method to retrieve depth based on motion and stereopsis. A motion detection representation helps establishing further correspondences between different motion information. This representation bases in the permanency memories mechanism, where jumps of pixels between grey level bands are computed in a matrix of charge accumulators. For each frame of a video stereovision sequence, the method fixes the right permanency stereo memory, and displaces the left permanency stereo memory by pixel on the epipolar restriction basis over the right one, in order to analyze the disparities of the motion trails calculated. By means of this functionality, for all possible displacements of one permanency memory over the other, the correspondences between motion trails are checked, and the disparities are assigned, providing a way to analyze the depths of the objects present in the scene.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley, Reading (1992)

    Google Scholar 

  2. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8) (2003)

    Google Scholar 

  3. Sumi, Y., Kawai, Y., Yoshimi, T., Tomita, F.: 3D object recognition in cluttered environments by segment-based stereo vision. International Journal of Computer Vision 46(1), 5–23 (2002)

    Article MATH  Google Scholar 

  4. Koenderink, J.A., van Doorn, A.J.: Geometry of binocular vision and a model for stereopsis. Biological Cibernetics 21, 29–35 (1976)

    Article  Google Scholar 

  5. Wildes, R.P.: Direct recovery of three-dimensional scene geometry from binocular stereo disparity. IEEE Transactions on Pattern Analisis and Machine Intelligence 13(8), 761–774 (1991)

    Article  Google Scholar 

  6. Wilson, R., Knutsson, H.: A multiresolution stereopsis algorithm based on Gabor representation. In: Proceedings of the IEE International Conference on Image Processing and Applications, pp. 19–22 (1989)

    Google Scholar 

  7. Mhlmann, K., Maier, D., Hesser, J., Mnner, R.: Calculating dense disparity maps from color stereo images, an efficient implementation. International Journal of Computer Vision 47(1-3), 79–88 (2002)

    Article  Google Scholar 

  8. Gutirrez, S., Marroqun, J.L.: Robust approach for disparity estimation in stereo vision. Image and Vision Computing 22(3), 183–195 (2004)

    Article  Google Scholar 

  9. Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation. Pattern Recognition 36(5), 1131–1142 (2003)

    Article MATH  Google Scholar 

  10. Fernández, M.A., Fernández-Caballero, A., López, M.T., Mira, J.: Lenght-speed ratio (LSR) as a characteristic for moving elements real-time classification. Real-Time Imaging 9, 49–59 (2003)

    Article  Google Scholar 

  11. Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Lateral interaction in accumulative computation: A model for motion detection. Neurocomputing 50, 341–364 (2003)

    Article MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha, 02071, Albacete, Spain

    Miguel A. Fernández, Antonio Fernández-Caballero & María T. López

  2. Universidad de Castilla-La Mancha, Escuela Universitaria Politécnica de Cuenca, 13071, Cuenca, Spain

    José M. López-Valles

  3. Universidad Nacional de Educación a Distancia, E.T.S.I. Informática, 28040, Madrid, Spain

    José Mira & Ana E. Delgado

Authors
  1. Miguel A. Fernández

    You can also search for this author inPubMed Google Scholar

  2. José M. López-Valles

    You can also search for this author inPubMed Google Scholar

  3. Antonio Fernández-Caballero

    You can also search for this author inPubMed Google Scholar

  4. María T. López

    You can also search for this author inPubMed Google Scholar

  5. José Mira

    You can also search for this author inPubMed Google Scholar

  6. Ana E. Delgado

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Instituto Universitario de Ciencias y Tecnologícas Cibernéticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria,, Las Palmas, Spain

    Roberto Moreno Díaz

  2. Systems Theory, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040, Linz, Austria

    Franz Pichler

  3. Universidad de Las Palmas de Gran Canaria, Instituto Universitario de Ciencias y Tecnologícas Cibernéticas, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain

    Alexis Quesada Arencibia

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, M.A., López-Valles, J.M., Fernández-Caballero, A., López, M.T., Mira, J., Delgado, A.E. (2005). Permanency Memories in Scene Depth Analysis. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2005. EUROCAST 2005. Lecture Notes in Computer Science, vol 3643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556985_69

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp