Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Logic for Rough Sets with Rough Double Stone Algebraic Semantics

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 3641))

Abstract

Many researchers study rough sets from the point of view of description of the rough set pairs(a rough set pair is also called a rough set), i.e. <lower approximation set, upper approximation set>. An important result is that the collection of rough sets of an approximation space can be made into a regular double Stone algebra. In this paper, a logic for rough sets, i.e., the sequent calculus corresponding to rough double Stone algebra, is proposed. The syntax and semantics are defined. The soundless and completeness are proved.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fundamenta Informaticae 28, 211–221 (1996)

    MATH MathSciNet  Google Scholar 

  2. Comer, S.: On connections between information systems, rough sets and algebraic logic. In: Algebraic methods in logic and computer science, pp. 117–124. Banach Center Publications (1993)

    Google Scholar 

  3. Dai, J.H.: Structure of rough approximations based on molecular lattices. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 69–77. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Düntsch, I.: A logic for rough sets. Theoretical Computer Science, 427–436 (1997)

    Google Scholar 

  5. Gehrke, M., Walker, E.: On the structure of rough sets. Bulletin of the Polish Academy of Sciences: Mathematics 40, 235–255 (1992)

    MATH MathSciNet  Google Scholar 

  6. Iturrioz, L.: Rough sets and 3-valued structures. In: Orlowska, E. (ed.) Logic at work, pp. 596–603. Springer, Heidelberg (1998)

    Google Scholar 

  7. Iwiński, T.B.: Algebraic approach to rough sets. Bulletin of the Polish Academy of Sci-ences: Mathematics 35, 673–683 (1987)

    MATH  Google Scholar 

  8. Jarvinen, J.: On the structure of rough approximations. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 123–130. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Lin, T.Y., Liu, Q.: Rough approximate operators: Axiomatic rough set theory. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 256–260. Springer, Berlin (1994)

    Google Scholar 

  10. Pagliani, P.: Rough sets and Nelson algebras. Fundamenta Informaticae 27, 205–219 (1996)

    MATH MathSciNet  Google Scholar 

  11. Pagliani, P.: Rough set theory and logic-algebraic structures. In: Orlowska, E. (ed.) Incomplete information: Rough set analysis, pp. 109–190. Physica, Heidelberg (1998)

    Google Scholar 

  12. Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  13. Pomykala, J., Pomykala, J.A.: The Stone algebra of rough sets. Bulletin of the Polish Academy of Sciences: Mathematics 36, 495–508 (1988)

    MATH MathSciNet  Google Scholar 

  14. Rasiowa, H.: An algebraic approach to non-classical logics. North Holland, Amsterdam (1974)

    MATH  Google Scholar 

  15. Sen, J., Chakraborty, M.K.: A study of interconnections between rough and 3-valued Lukasiewicz logics. Fundamenta Informaticae 51, 311–324 (2002)

    Article MATH MathSciNet  Google Scholar 

  16. Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109, 21–47 (1998)

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Artificial Intelligence, Zhejiang University, Hangzhou, 310012, P.R. China

    Jian-Hua Dai

Authors
  1. Jian-Hua Dai

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Regina, Regina, SK, S4S 0A2 Canada, Polish-Japanese Institute of Information Technology, Koszykowa 86, 02-008 Warsaw, P.O. Box, Poland

    Dominik Ślęzak

  2. School of Information Science and Technology, Southwest Jiaotong University, 610031, Chengdu, P.R. China

    Guoyin Wang

  3. Institute of Mathematics, Warsaw University, Banacha 2, 02-097, Warsaw, Poland

    Marcin Szczuka

  4. Department of Computer Science, Brock University, St. Catharines, L2S 3A1, Ontario, Canada

    Ivo Düntsch

  5. Department of Computer Science, University of Regina, S4S 0A2, Regina, Saskatchewan, Canada

    Yiyu Yao

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dai, JH. (2005). Logic for Rough Sets with Rough Double Stone Algebraic Semantics. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_15

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp