Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Modified Particle Swarm Optimizer for Tracking Dynamic Systems

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 3612))

Included in the following conference series:

  • 1800Accesses

Abstract

The paper proposes a modified particle swarm optimizer for tracking dynamic systems. In the new algorithm, the changed local optimum and global optimum are introduced to guide the movement of each particle and avoid making direction and velocity decisions on the basis of the outdated information. An environment influence factor is put forward based on the two optimums above, which dynamically decide the change of the inertia weight. The combinations of the different local optimum update strategy and local inertia weight update strategy are tested on the parabolic benchmark function. The results on the benchmark function with various severities suggest that modified particle swarm optimizer performs better in convergence speed and aggregation accuracy.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eberhart, R.C., Shi, Y.H.: Particle Swarm Optimization: Development, Applications and Resources. In: Proceedings of Congress on Evolutionary Computation, Seoul, Korea, pp. 81–86 (2001)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  3. Blackwell, T.: Swarms in Dynamic Environments. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Esquivel, S.C., Coello Coello, C.A.: Particle Swarm Optimization in Non-stationary Environments. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 757–766. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Janson, S., Middendorf, M.: A Hierarchical Particle Swarm Optimizer for Dynamic Optimization Problems. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 513–524. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimizer in noisy and continuously changing environments. In: Hamza, M.H. (ed.) Proceeding of the IASTED International Conference on Artificial Intelligence and Soft Computing, pp. 289–294. ISATED/ACTA Press, Cancun (2001)

    Google Scholar 

  8. Carlisle, A., Dozier, G.: Adapting PSO to dynamic environment. In: Proceedings of international conference on artificial Intelligence, Las Vegas, Nevada, USA, pp. 429–434 (2000)

    Google Scholar 

  9. Carlisle, A., Dozier, G.: Tracking Changing Extrema with Particle Swarm Optimization. Auburn University Technical Report CSSE01-08 [R] (2001)

    Google Scholar 

  10. Hu, X., Eberhart, R.C.: Adaptive Particle swarm optimization: Detection and Response to Dynamic Systems, pp. 1666–1670 (2002)

    Google Scholar 

  11. Eberhart, R.C., Shi, Y.: Tracking and Optimizing Dynamic Systems with Particle Swarms. In: Proceedings Congress on Evolutionary Computation 2001, pp. 94–97. IEEE Press, Piscataway (2001)

    Chapter  Google Scholar 

  12. Xuanping, Z., Yuping, D., Guoqiang, Q., Zheng, Q.: An Adaptive Particle Swarm Optimization with Dynamically Changing Weight (in Chinese). Journal of Xi’an Jiaotong University (August 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, Xi’an Jiaotong University, Xi’an, P.R.C

    Xuanping Zhang, Yuping Du, Zheng Qin, Guoqiang Qin & Jiang Lu

Authors
  1. Xuanping Zhang

    You can also search for this author inPubMed Google Scholar

  2. Yuping Du

    You can also search for this author inPubMed Google Scholar

  3. Zheng Qin

    You can also search for this author inPubMed Google Scholar

  4. Guoqiang Qin

    You can also search for this author inPubMed Google Scholar

  5. Jiang Lu

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. School of Electrical and Electronic Engineering, Nanyang Technological University, Block S1, Nanyang Avenue, 639798, Singapore

    Lipo Wang

  2. School of Software, Sun Yat-Sen University, 510275, Guangzhou, China

    Ke Chen

  3. School of Computer Engineering, Nanyang Technological University, BLK N4, 2b-39, Nanyang Avenue, 639798, Singapore

    Yew Soon Ong

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Du, Y., Qin, Z., Qin, G., Lu, J. (2005). A Modified Particle Swarm Optimizer for Tracking Dynamic Systems. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539902_72

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp