Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Efficient and Leakage-Resilient Authenticated Key Transport Protocol Based on RSA

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 3531))

  • 2713Accesses

Abstract

Let us consider the following situation: (1) a client, who communicates with a variety of servers, remembers only one password and hasinsecure devices with very-restricted computing power and built-in memory capacity; (2) the counterpart servers have enormous computing power, but they are not perfectly secure; (3) neither PKI (Public Key Infrastructures) nor TRM (Tamper-Resistant Modules) is available.

Our main goal of this paper is to provide its security against the leakage of stored secrets as well as to attain high efficiency on client’s side. For those, we propose an efficient and leakage-resilient RSA-based Authenticated Key Establishment (RSA-AKE) protocol suitable for the above situation whose authenticity is based on passwordand an additional stored secret. TheRSA-AKE protocol is provably secure in the random oracle model where an adversary is given the stored secret of client and the RSA private key of server. In terms of computation costs, the client is required to compute only one modular exponentiation with an exponente (e ≥ 3) in the protocol execution. We also show that theRSA-AKE protocol has several security properties and efficiency over the previous ones of their kinds.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-based Protocols Secure against Dictioinary Attacks. In: Proc. of IEEE Symposium on Security and Privacy, pp. 72–84. IEEE Computer Society, Los Alamitos (1992)

    Chapter  Google Scholar 

  2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: Proc. of ACM CCS 19 93, pp. 62–73 (1993)

    Google Scholar 

  4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

    Google Scholar 

  5. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures: How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

    Google Scholar 

  6. Catalano, D., Pointcheval, D., Pornin, T.: IPAKE: Isomorphisms for Passwordbased Authenticated Key Exchange. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 477–493. Springer, Heidelberg (2004), The full version is available athttp://www.di.ens.fr/~pointche/slides.php?reference=CaPoPo04

    Google Scholar 

  7. Diffie, W., Hellman, M.: New Directions in Cryptography. In: IEEE Transactions on Information Theory IT-22(6), pp. 644–654 (1976)

    Google Scholar 

  8. Diffie, W., van Oorschot, P., Wiener, M.: Authentication and Authenticated Key Exchange. In: Proc. of Designs, Codes, and Cryptography, pp. 107–125 (1992)

    Google Scholar 

  9. Gong, L.: Optimal Authentication Protocols Resistant to Password Guessing Attacks. In: Proc. of IEEE Computer Security Foundation Workshop, pp. 24–29 (1995)

    Google Scholar 

  10. Frier, A., Karlton, P., Kocher, P.: The SSL 3.0 Protocol. Netscape Communication Corp. (1996), available athttp://wp.netscape.com/eng/ssl3/

  11. Halevi, S., Krawczyk, H.: Public-Key Cryptography and Password Protocols (February 1999)

    Google Scholar 

  12. IETF (Internet Engineering Task Force). Secure Shell (secsh) Charter,http://www.ietf.org/html.charters/secsh-charter.html

  13. IETF (Internet Engineering Task Force). Transport Layer Security (tls) Charter,http://www.ietf.org/html.charters/tls-charter.html

  14. Katz, J., Ostrovsky, R., Yung, M.: Forward Secrecy in Password-Only Key Exchange Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 29–44. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Lamos, M., Gong, L., Saltzer, J., Needham, R.: Reducing Risks from Poorly Chosen Keys. In: Proc. of the 12th ACM Symposium on Operating System Principles, ACM Operating Systems Review, pp. 14–18 (1989)

    Google Scholar 

  16. MacKenzie, P., Patel, S., Swaminathan, R.: Password-Authenticated Key Exchange Based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 599–613. Springer, Heidelberg (2000), The full version is available athttp://cm.bell-labs.com/who/philmac/bib.html

    Chapter  Google Scholar 

  17. Phoenix Technologies Inc.: Research Papers on Strong Password Authentication, available athttp://www.integritysciences.com/links.html

  18. Shamir, A.: How to Share a Secret. Proc. of Communications of the ACM 22(11), 612–613 (1979)

    Article MATH MathSciNet  Google Scholar 

  19. Shoup, V.: On Formal Models for Secure Key Exchange. IBM Research Report RZ 3121 (1999)

    Google Scholar 

  20. Wilson, S.B., Johnson, D., Menezes, A.: Key Agreement Protocols and their Security Analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, Springer, Heidelberg (1997)

    Google Scholar 

  21. Wu, T.: A Real-world Analysis of Kerberos Password Security. In: Proc. of Network and Distributed System Security Symposium (February 1999)

    Google Scholar 

  22. Zhang, M.: New Approaches to Password Authenticated Key Exchange based on RSA. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 230–244. Springer, Heidelberg (2004), Cryptology ePrint Archive, Report 2004/033, available athttp://eprint.iacr.org/2004/033

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan

    SeongHan Shin, Kazukuni Kobara & Hideki Imai

Authors
  1. SeongHan Shin

    You can also search for this author inPubMed Google Scholar

  2. Kazukuni Kobara

    You can also search for this author inPubMed Google Scholar

  3. Hideki Imai

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. AT&T Labs – Research,  

    John Ioannidis

  2. Computer Science Department, Columbia University,  

    Angelos Keromytis

  3. Computer Science Department, Google Inc. and Columbia University, 1214 Amsterdam Avenue, 10027, New York, NY, USA

    Moti Yung

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shin, S., Kobara, K., Imai, H. (2005). Efficient and Leakage-Resilient Authenticated Key Transport Protocol Based on RSA. In: Ioannidis, J., Keromytis, A., Yung, M. (eds) Applied Cryptography and Network Security. ACNS 2005. Lecture Notes in Computer Science, vol 3531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496137_19

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp