Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

New Algorithms for Performance Trace Analysis Based on Compressed Complete Call Graphs

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 3515))

Included in the following conference series:

  • 1226Accesses

Abstract

This paper addresses performance and scalability issues of state-of-the-art trace analysis. The Complete Call Graph (CCG) data structure is proposed as an alternative to the common linear storage schemes. By transparent in-memory compression CCGs are capable of exploiting redundancy as frequently found in traces and thus reduce the memory requirements notably. Evaluation algorithms can be designed to take advantage of CCGs, too, such that the computational effort is reduced in the same order of magnitude as the memory requirements.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Almasi, G., Archer, C., Gunnels, J., Heidelberger, P., Martorell, X., Moreira, J.E.: Architecture and Performance of the BlueGene/L Message Layer. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 259–267. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Brunst, H., Hoppe, H.-C., Nagel, W.E., Winkler, M.: Performance Otimization for Large Scale Computing: The Scalable VAMPIR Approach. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2074, p. 751. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Brunst, H., Nagel, W.E., Seidl, S.: Performance Tuning on Parallel Systems: All Problems Solved? In: Sørevik, T., Manne, F., Moe, R., Gebremedhin, A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp. 279–287. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Brunst, H., Malony, A.D., Shende, S.S., Bell, R.: Online Remote Trace Analysis of Parallel Applications on High-Performance Clusters. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds.) ISHPC 2003. LNCS, vol. 2858, pp. 440–449. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Brunst, H., Nagel, W.E., Malony, A.D.: A Distributed Performance Analysis Architecture for Clusters. In: IEEE International Conference on Cluster Computing, Cluster 2003, Hong Kong, China, December 2003, pp. 73–81. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  6. Grove, D., Chambers, C.: An assessment of call graph construction algorithms (2000),http://citeseer.nj.nec.com/grove00assessment.html

  7. Knüpfer, A.: A New Data Compression Technique for Event Based Program Traces. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2659, pp. 956–965. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Knüpfer, A., Brunst, H., Nagel, W.E.: High Performance Event Trace Visualization. In: 13th Euromicro Conference on Parallel, Distributed and Network-based Processing, Lugano, Switzerland (February 2005)

    Google Scholar 

  9. Knüpfer, A., Kranzlmüller, D., Nagel, W.E.: Detection of Collective MPI Operation Patterns. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 259–267. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Knüpfer, A., Nagel, W.E.: Compressible Memory Data Structures for Event Based Trace Analysis. Future Generation Computer Systems by Elsevier (2004) (accepted for publication)

    Google Scholar 

  11. Kranzlmüller, D., Scarpa, M., Volkert, J.: DeWiz - A Modular Tool Architecture for Parallel Program Analysis. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 74–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Seidl, S.: VTF3 - A Fast Vampir Trace File Low-Level Library. personal communications (May 2002)

    Google Scholar 

  13. The ASCI Project. The IRS Benchmark Code: Implicit Radiation Solver (2003),http://www.llnl.gov/asci/purple/benchmarks/limited/irs/

  14. Wolf, F., Mohr, B.: EARL - A Programmable and Extensible Toolkit for Analyzing Event Traces of Message Passing Programs. Technical report, Research Center Jülich, FZJ-ZAM-IB-9803 (April 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center for High Performance Computing, Dresden University of Technology, Germany

    Andreas Knüpfer & Wolfgang E. Nagel

Authors
  1. Andreas Knüpfer

    You can also search for this author inPubMed Google Scholar

  2. Wolfgang E. Nagel

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, USA

    Vaidy S. Sunderam

  2. Department of Mathematics and Computer Science, University of Amsterdam, Kruislaan 403, 1098, Amsterdam, SJ, The Netherlands

    Geert Dick van Albada

  3. Faculty of Sciences, Section of Computational Science, University of Amsterdam, Kruislaan 403, 1098, Amsterdam, SJ, The Netherlands

    Peter M. A. Sloot

  4. Computer Science Department, University of Tennessee, 37996-3450, TN, Knoxville, USA

    Jack J. Dongarra

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knüpfer, A., Nagel, W.E. (2005). New Algorithms for Performance Trace Analysis Based on Compressed Complete Call Graphs. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds) Computational Science – ICCS 2005. ICCS 2005. Lecture Notes in Computer Science, vol 3515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11428848_15

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp