Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Distribution ofr-Patterns in the Most Significant Bit of a Maximum Length Sequence over\({\mathbb Z}_{2^l}\)

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 3486))

Included in the following conference series:

Abstract

The number of subwords of lengthr and of given value within a period of a sequence in the title is shown to be close to equidistribution. Important tools in the proof are a higher order correlation and Galois ring character sum estimates.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dai, Z.-D.: Binary sequences derived from ML-sequences over rings I: period and minimal polynomial. J. Cryptology 5, 193–507 (1992)

    Article MATH MathSciNet  Google Scholar 

  2. Dai, Z.-D., Dingfeng, Y., Ping, W., Genxi, F.: Distribution ofr −patterns in the highest level ofp −adic sequences over Galois Rings. In: Golomb Symposium USC 2002 (2002)

    Google Scholar 

  3. Davenport, H.: Multiplicative Number Theory, GTM 74. Springer, Heidelberg (2000)

    Google Scholar 

  4. Fan, S., Han, W.: Random properties of the highest level sequences of primitive Sequences over\({\mathbb Z}_{2^e}\). IEEE Trans. Inform. Theory IT-49, 1553–1557 (2003)

    MathSciNet  Google Scholar 

  5. Helleseth, T., Kumar, P.V.: Sequences with low Correlation. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1765–1853. North Holland, Amsterdam (1998)

    Google Scholar 

  6. Kumar, P.V., Helleseth, T.: An expansion of the coordinates of the trace function over Galois rings. AAECC 8, 353–361 (1997)

    Article MATH MathSciNet  Google Scholar 

  7. Kumar, P.V., Helleseth, T., Calderbank, A.R.: An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans. Inform. Theory IT-41, 456–468 (1995)

    Article MathSciNet  Google Scholar 

  8. Lahtonen, J.: On the odd and the aperiodic correlation properties of the binary Kasami sequences. IEEE Trans. Inform. Theory IT-41, 1506–1508 (1995)

    Article MathSciNet  Google Scholar 

  9. Lahtonen, J., Ling, S., Solé, P., Zinoviev, D.:\({\mathbb Z}_8\)-Kerdock codes and pseudo-random binary sequences. Journal of Complexity 20(2-3), 318–330 (2004)

    Article MATH MathSciNet  Google Scholar 

  10. Solé, P., Zinoviev, D.: The most significant bit of maximum length sequences over\({\mathbb Z}_{2^l}\) autocorrection and imbalance. IEEE IT (2004) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CNRS-I3S, ESSI, Route des Colles, 06 903, Sophia Antipolis, France

    Patrick Solé

  2. Institute for Problems of Information Transmission, Russian Academy of Sciences, Bol’shoi Karetnyi, 19, GSP-4, Moscow, 101447, Russia

    Dmitrii Zinoviev

Authors
  1. Patrick Solé

    You can also search for this author inPubMed Google Scholar

  2. Dmitrii Zinoviev

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Informatics, University of Bergen, PB 7803, 5020, Bergen, Norway

    Tor Helleseth

  2. University of Ilinois at Urbana-Champaign, 1406 West Green Street, IL 61801, Urbana, USA

    Dilip Sarwate

  3. Department of Electrical and Electronic Engineering, Yonsei University, 121-749, Seoul, Korea

    Hong-Yeop Song

  4. Dept. of Electronics and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 790-784, Pohang, Kyungbuk, Korea

    Kyeongcheol Yang

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solé, P., Zinoviev, D. (2005). Distribution ofr-Patterns in the Most Significant Bit of a Maximum Length Sequence over\({\mathbb Z}_{2^l}\) . In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_20

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp