Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

The Ruminococci: key symbionts of the gut ecosystem

  • Review
  • Human Microbiomes and Probiotics
  • Published:
Journal of Microbiology

Abstract

Mammalian gut microbial communities form intricate mutualisms with their hosts, which have profound implications on overall health. One group of important gut microbial mutualists are bacteria in the genusRuminococcus, which serve to degrade and convert complex polysaccharides into a variety of nutrients for their hosts. Isolated decades ago from the bovine rumen, ruminococci have since been cultured from other ruminant and non-ruminant sources, and next-generation sequencing has further shown their distribution to be widespread in a diversity of animal hosts. While most ruminococci that have been studied are those capable of degrading cellulose, much less is known about non-cellulolytic, nonruminant-associated species, such as those found in humans. Furthermore, a mechanistic understanding of the role ofRuminococcus spp. in their respective hosts is still a work in progress. This review highlights the broad work done on species within the genusRuminococcus with respect to their physiology, phylogenetic relatedness, and their potential impact on host health.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Abell, G.C.J., Cooke, C.M., Bennett, C.N., Conlon, M.A., and Mc-Orist, A.L. 2008. Phylotypes related toRuminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch.FEMS Microbiol. Ecol.66, 505–515.

    Article CAS PubMed  Google Scholar 

  • Aminov, R.I., Kaneichi, K., Miyagi, T., Sakka, K., and Ohmiya, K. 1994. Construction of genetically markedRuminococcus albus strains and conjugal transfer of plasmid pAMB1 into them.J. Ferment. Bioeng.78, 1–5.

    Article CAS  Google Scholar 

  • Bryant, M.P. and Robinson, I.M. 1961. Some nutritional requirements of the genus Ruminococcus.Appl. Microbiol.9, 91–95.

    CAS PubMed PubMed Central  Google Scholar 

  • Cao, Y., Zhang, R., Sun, C., Cheng, T., Liu, Y., and Xian, M. 2013. Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes.Biomed Res. Int.2013, 723412.

    PubMed PubMed Central  Google Scholar 

  • Chassard, C., Delmas, E., Robert, C., Lawson, P.A., and Bernalier-Donadille, A. 2012.Ruminococcus champanellensis sp.nov., a cellulose-degrading bacterium from human gut microbiota. Int. J. Syst. Evol. Microbiol.62, 138–143.

    CAS PubMed  Google Scholar 

  • Chen, J., Stevenson, D.M., and Weimer, P.J. 2004. Albusin B, a bacteriocin from the ruminal bacteriumRuminococcus albus 7 that inhibits growth ofRuminococcus flavefaciens.Appl. Environ. Microbiol.70, 3167–3170.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Christopherson, M.R., Dawson, J.A., Stevenson, D.M., Cunningham, A.C., Bramhacharya, S., Weimer, P.J., Kendziorski, C., and Suen, G. 2014. Unique aspects of fiber degradation by the ruminal ethanologenRuminococcus albus 7 revealed by physiological and transcriptomic analysis.BMC Genomics15, 1066.

    Article PubMed PubMed Central  Google Scholar 

  • Christopherson, M.R. and Suen, G. 2013. Nature’s bioreactor: the rumen as a model for biofuel production.Biofuels4, 511–521.

    Article CAS  Google Scholar 

  • Chua, H.H., Chou, H.C., Tung, Y.L., Chiang, B.L., Liao, C.C., Liu, H.H., and Ni, Y.H. 2018. Intestinal dysbiosis featuring abundance ofRuminococcus gnavus associates with allergic diseases in infants.Gastroenterology154, 154–167.

    Article PubMed  Google Scholar 

  • Cocconcelli, P.S., Ferrari, E., Rossi, F., and Bottazzi, V. 1992. Plasmid transformation ofRuminococcus albus by means of high-voltage electroporation.FEMS Microbiol. Lett.73, 203–207.

    Article CAS PubMed  Google Scholar 

  • Consortium, T.H.M.P. 2013. Structure, function and diversity of the healthy human microbiome.Nature486, 207–214.

    Google Scholar 

  • Crost, E.H., Tailford, L.E., Le Gall, G., Fons, M., Henrissat, B., and Juge, N. 2013. Utilisation of mucin glycans by the human gut symbiontRuminococcus gnavus is strain-dependent.PLoS One8, e76341.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Crost, E.H., Tailford, L.E., Monestier, M., Swarbreck, D., Henrissat, B., Crossman, L.C., and Juge, N. 2016. The mucin-degradation strategy ofRuminococcus gnavus: The importance of intramolecular trans-sialidases.Gut Microbes7, 302–312.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Cuív, P.Ó., Smith, W.J., Pottenger, S., Burman, S., Shanahan, E.R., and Morrison, M. 2015. Isolation of genetically tractable mostwanted bacteria by metaparental mating.Sci. Rep.5, 13282.

    Article PubMed PubMed Central  Google Scholar 

  • Dassa, B., Borovok, I., Ruimy-Israeli, V., Lamed, R., Flint, H.J., Duncan, S.H., Henrissat, B., Coutinho, P., Morrison, M., Mosoni, C.J.,et al. 2014. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains.PLoS One9, e99221.

    Article PubMed PubMed Central  Google Scholar 

  • David, Y.B., Dassa, B., Borovok, I., Lamed, R., Koropatkin, N.M., Martens, E.C., White, B.A., Bernalier-Donadille, A., Duncan, S.H., Flint, H.J.,et al. 2015. Ruminococcal cellulosome systems from rumen to human.Environ. Microbiol.17, 3407–3426.

    Article PubMed  Google Scholar 

  • Devendran, S., Abdel-Hamid, A.M., Evans, A.F., Iakiviak, M., Kwon, I.H., Mackie, R.I., and Cann, I. 2016. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacteriumRuminococcus albus 8 to degrade cellooligosaccharides.Sci. Rep.6, 35342.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Devillard, E., Goodheart, D.B., Karnati, S.K.R., Bayer, E.A., Lamed, R., Miron, J., Nelson, K.E., and Morrison, M. 2004.Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture.J. Bacteriol.186, 136–145.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Ding, S.Y., Bayer, E.A., Steiner, D., Shoham, Y., and Lamed, R. 1999. A novel cellulosomal scaffoldin fromAcetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase.J. Bacteriol.181, 6720–6729.

    CAS PubMed PubMed Central  Google Scholar 

  • Ding, S.Y., Bayer, E.A., Steiner, D., Shoham, Y., and Lamed, R. 2000. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins.J. Bacteriol.182, 4915–4925.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Ding, S., Rincon, M.T., Lamed, R., Martin, J.C., McCrae, S.I., Aurilia, V., Shoham, Y., Bayer, E.A., and Flint, H.J. 2001. Cellulosomal scaffoldin-like proteins fromRuminococcus flavefaciens.183, 1945–1953.

    CAS  Google Scholar 

  • Domingo, M.C., Huletsky, A., Boissinot, M., Bernard, K.A., Picard, F.J., and Bergeron, M.G. 2008. Ruminococcus gauvreauii sp.nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int. J. Syst. Evol. Microbiol.58, 1393–1397.

    CAS PubMed  Google Scholar 

  • Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A. 2005. Diversity of the human intestinal microbial flora.Science308, 1635–1638.

    Article PubMed PubMed Central  Google Scholar 

  • Ezer, A., Matalon, E., Jindou, S., Borovok, I., Atamna, N., Yu, Z., Morrison, M., Bayer, E.A., and Lamed, R. 2008. Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique toRuminococcus albus.J. Bacteriol.190, 8220–8222.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Finegold, S.M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E.M.,et al. 2002. Gastrointestinal microflora studies in late-onset autism.Clin. Infect. Dis.35 Suppl., S6–S16.

    Article PubMed  Google Scholar 

  • Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., and White, B.A. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis.Nat. Rev. Microbiol.6, 121–131.

    Article CAS PubMed  Google Scholar 

  • Hall, A.B., Tolonen, A.C., and Xavier, R.J. 2017. Human genetic variation and the gut microbiome in disease.Nat. Rev. Genet.18, 690–699.

    Article CAS PubMed  Google Scholar 

  • Hansen, S.G.K., Skov, M.N., and Justesen, U.S. 2013. Two cases ofRuminococcus gnavus bacteremia associated with diverticulitis.J. Clin. Microbiol.51, 1334–1336.

    Article PubMed PubMed Central  Google Scholar 

  • Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Global Rumen Census Collaborators, and Janssen, P.H. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range.Sci. Rep.5, 14567.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Holdeman, L.V. and Moore, W.E. 1974. New genus, Coprococcus, twelve new species, and emended descriptions of four previously describes species of bacteria from human feces.Int. J. Syst. Bacteriol.24, 260–277.

    Article  Google Scholar 

  • Hsiao, A., Ahmed, A.M.S., Subramanian, S., Griffin, N.W., Drewry, L.L., Petri, W.A., Haque, R., Ahmed, T., and Gordon, J.I. 2014. Members of the human gut microbiota involved in recovery fromVibrio cholerae infection.Nature515, 423–426.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Hungate, R.E. 1957. Microorganisms in the rumen fed a constant ration.Can. J. Microbiol.3, 289–311.

    Article CAS PubMed  Google Scholar 

  • Iakiviak, M., Devendran, S., Skorupski, A., Moon, Y.H., Mackie, R.I., and Cann, I. 2016. Functional and modular analyses of diverse endoglucanases fromRuminococcus albus 8, a specialist plant cell wall degrading bacterium.Sci. Rep.6, 29979.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Iakiviak, M., Mackie, R.I., and Cann, I.K.O. 2011. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacteriumRuminococcus albus 8.Appl. Environ. Microbiol.77, 7541–7550.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Iannotti, E.L., Kafkewitz, I.D., Wolin, M.J., and Bryant, M.P. 1973. Glucose fermentation products ofRuminococcus albus grown in continuous culture withVibrio succinogenes: changes caused by interspecies transfer of H2.J. Bacteriol.114, 1231–1240.

    CAS PubMed PubMed Central  Google Scholar 

  • Israeli-Ruimy, V., Bule, P., Jindou, S., Dassa, B., Moraïs, S., Borovok, I., Barak, Y., Slutzki, M., Hamberg, Y., Cardoso, V.,et al. 2017. Complexity of theRuminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions.Sci. Rep.7, 42355.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Jenq, R.R., Taur, Y., Devlin, S.M., Ponce, D.M., Goldberg, J.D., Ahr, K.F., Littmann, E.R., Ling, L., Gobourne, A.C., Miller, L.C.,et al. 2015. Intestinal Blautia is associated with reduced death from graft-versus-host disease.Biol. Blood Marrow Transplant.21, 1373–1383.

    Article PubMed PubMed Central  Google Scholar 

  • Jones, B.V., Begley, M., Hill, C., Gahan, C.G.M., and Marchesi, J.R. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome.Proc. Natl. Acad. Sci. USA105, 13580–13585.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Kang, S., Denman, S.E., Morrison, M., Yu, Z., Dore, J., Leclerc, M., and McSweeney, C.S. 2010. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray.Inflamm. Bowel Dis.16, 2034–2042.

    Article PubMed  Google Scholar 

  • Kim, M.S., Roh, S.W., and Bae, J.W. 2011. Ruminococcus faecis sp.nov., isolated from human faeces. J. Microbiol.49, 487–491.

    PubMed  Google Scholar 

  • Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. 2005. Cellulose: Fascinating biopolymer and sustainable raw material.Angew. Chem. Int. Ed. Engl.44, 3358–3393.

    Article CAS PubMed  Google Scholar 

  • Klieve, A.V., O’Leary, M.N., McMillen, L., and Ouwerkerk, D. 2007.Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet.J. Appl. Microbiol.103, 2065–2073.

    Article CAS PubMed  Google Scholar 

  • Koeck, D.E., Pechtl, A., Zverlov, V. V., and Schwarz, W.H. 2014. Genomics of cellulolytic bacteria.Curr. Opin. Biotechnol.29, 171–183.

    Article CAS PubMed  Google Scholar 

  • Koskey, A.M., Fisher, J.C., Eren, A.M., Ponce-Terashima, R., Reis, M.G., Blanton, R.E., and McLellan, S.L. 2014. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters.Environ. Microbiol. Rep.6, 696–704.

    Article PubMed PubMed Central  Google Scholar 

  • Krause, D.O., Bunch, R.J., Smith, W.J.M., and McSweeney, C.S. 1999a. Diversity of Ruminococcus strains: a survey of genetic polymorphisms and plant digestibility.J. Appl. Microbiol.86, 487–495.

    Article  Google Scholar 

  • Krause, D.O., Dalrymple, B.P., Smith, W.J., Mackie, R.I., and Mc-Sweeney, C.S. 1999b. 16S rDNA sequencing ofRuminococcus albus andRuminococcus flavefaciens: Design of a signature probe and its application in adult sheep.Microbiology145, 1797–1807.

    Article CAS PubMed  Google Scholar 

  • La Reau, A.J., Meier-Kolthoff, J.P., and Suen, G. 2016. Sequencebased analysis of the genusRuminococcus resolves its phylogeny and reveals strong host association.Microb. Genomics2, e000099.

    Google Scholar 

  • Lamed, R., Naimark, J., Morgenstern, E., and Bayer, E. 1987. Specialized cell-surface structures in cellulolytic bacteria.J. Bacteriol.169, 3792–3800.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Lamed, R., Setter, E., and Bayer, E. 1983a. Characterization of a cellulose-binding, cellulose-containing complex inClostridium thermocellum.J. Bacteriol.156, 828–836.

    CAS PubMed PubMed Central  Google Scholar 

  • Lamed, R., Setter, E., Kenig, R., and Bayer, E. 1983b. The cellulosome: A discrete cell surface organelle ofClostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities.Biotechnol. Bioeng. Symp.13, 163–181.

    CAS  Google Scholar 

  • Larsson, J.M.H., Karlsson, H., Crespo, J.G., Johansson, M.E.V., Eklund, L., Sjövall, H., and Hansson, G.C. 2011. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation.Inflamm. Bowel Dis.17, 2299–2307.

    Article PubMed  Google Scholar 

  • Latham, M.J. and Wolin, M.J. 1977. Fermentation of cellulose byRuminococcus flavefaciens in the presence and absence ofMethanobacterium ruminantium.Appl. Environ. Microbiol.34, 297–301.

    CAS PubMed PubMed Central  Google Scholar 

  • Lawson, P.A. and Finegold, S.M. 2014. Reclassification of Ruminococcus obeum as Blautia obeum comb.nov. Int. J. Syst. Evol. Microbiol.65, 789–793.

    Article PubMed  Google Scholar 

  • Lay, C., Sutren, M., Rochet, V., Saunier, K., Doré, J., and Rigottier-Gois, L. 2005. Design and validation of 16S rRNA probes to enumerate members of theClostridium leptum subgroup in human faecal microbiota.Environ. Microbiol.7, 933–946.

    Article CAS PubMed  Google Scholar 

  • Leschine, S.B. 1995. Cellulose degradation in anaerobic nvironments.Annu. Rev. Microbiol.49, 399–426.

    Article CAS PubMed  Google Scholar 

  • Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R.,et al. 2008a. Evolution of mammals and their gut microbes.Science320, 1647–1651.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R., and Gordon, J.I. 2008b. Worlds within worlds: evolution of the vertebrate gut microbiota.Nat. Rev. Microbiol.6, 776–788.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen, J., Pang, X., Zhang, M.,et al. 2008. Symbiotic gut microbes modulate human metabolic phenotypes.Proc. Natl. Acad. Sci. USA105, 2117–2122.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Liu, C., Finegold, S.M., Song, Y., and Lawson, P.A. 2008. Reclassification ofClostridium coccoides,Ruminococcus hansenii,Ruminococcus hydrogenotrophicus,Ruminococcus luti,Ruminococcus productus andRuminococcus schinkii asBlautia coccoides gen. nov., comb. nov.,Blautia hansenii comb. nov., Blautia hydroge.Int. J. Syst. Evol. Microbiol.58, 1896–1902.

    Article CAS PubMed  Google Scholar 

  • Lloyd-Price, J., Abu-Ali, G., and Huttenhower, C. 2016. The healthy human microbiome.Genome Med.8, 1–11.

    Article  Google Scholar 

  • Lombard, V., Golaconda-Ramulu, H., Drula, E., Coutinho, P., and Henrissat, B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res.42, D490–D495.

    Article CAS PubMed  Google Scholar 

  • Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. 2002. Microbial cellulose utilization: Fundamentals and biotechnology.Microbiol. Mol. Biol. Rev.66, 506–577.

    Article CAS PubMed PubMed Central  Google Scholar 

  • McDonald, J.A.K., Schroeter, K., Fuentes, S., Heikamp-deJong, I., Khursigara, C.M., de Vos, W.M., and Allen-Vercoe, E. 2013. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model.J. Microbiol. Methods95, 167–174.

    Article CAS PubMed  Google Scholar 

  • Moon, Y.H., Iakiviak, M., Bauer, S., Mackie, R.I., and Cann, I.K.O. 2011. Biochemical analyses of multiple endoxylanases from the rumen bacteriumRuminococcus albus 8 and their synergistic activities with accessory hemicellulose-degrading enzymes.Appl. Environ. Microbiol.77, 5157–5169.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Moore, W.E.C., Cato, E.P., and Holden, L.V. 1972.Ruminococcus bromii sp. n. and emendation of the description ofRuminococcus sijpestein.Int. J. Syst. Bacteriol.22, 78–80.

    Article  Google Scholar 

  • Moore, W.E.C., Johnson, J.L., and Holdeman, L.V. 1976. Emendation of bacteroidaceae andButyrivibrio and descriptions ofDesulfomonas gen. nov. and ten new species in the generaDesulfomonas,Butyrivibrio,Eubacterium,Clostridium, andRuminococcus.Int. J. Syst. Bacteriol.26, 238–252.

    Article  Google Scholar 

  • Moraïs, S., David, Y.B., Bensoussan, L., Duncan, S.H., Koropatkin, N.M., Martens, E.C., Flint, H.J., and Bayer, E.A. 2016. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium,Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition.Environ. Microbiol.18, 542–556.

    Article PubMed  Google Scholar 

  • Mukhopadhya, I., Morais, S., Laverde-Gomez, J., Sheridan, P.O., Walker, A.W., Kelly, W., Klieve, A.V, Ouwerkerk, D., Duncan, S.H., Louis, P.,et al. 2017. Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degraderRuminococcus bromii.Environ. Microbiol.18, 5288–5302.

    Google Scholar 

  • Ohara, H., Karita, S., Kimura, T., Sakka, K., and Ohmiya, K. 2000. Characterization of the cellulolytic complex (cellulosome) fromRuminococcus albus.Biosci. Biotechnol. Biochem.64, 254–260.

    Article CAS PubMed  Google Scholar 

  • Pavlostathis, S.G., Miller, T.L., and Wolin, M.J. 1990. Cellulose fermentation by continuous cultures ofRuminococcus albus and Methanobrevibacter smithii.Appl. Microbiol. Biotechnol.33, 109–116.

    Article CAS  Google Scholar 

  • Pegden, R.S., Larson, M.A., Grant, R.J., and Morrison, M. 1998. Adherence of the gram-positive bacteriumRuminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins.J. Bacteriol.180, 5921–5927.

    CAS PubMed PubMed Central  Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T.,et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing.Nature464, 59–65.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Rainey, F.A. 2009. Family VIII. Ruminococcaceae fam. nov., pp. 1016–1043. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., and Whitman, W.B. (eds.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 3, Springer Nature.

  • Rainey, F.A. and Janssen, P.H. 1995. Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genusRuminococcus.FEMS Microbiol. Lett.129, 69–73.

    CAS PubMed  Google Scholar 

  • Round, J.L. and Mazmanian, S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease.Nat. Rev. Immunol.9, 313–323.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Salonen, A., Lahti, L., Salojärvi, J., Holtrop, G., Korpela, K., Duncan, S.H., Date, P., Farquharson, F., Johnstone, A.M., Lobley, G.E.,et al. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men.ISME J.8, 2218–2230.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Shi, Y., Odt, C.L., and Weimer, P.J. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.Appl. Environ. Microbiol.63, 734–742.

    CAS PubMed PubMed Central  Google Scholar 

  • Shi, Y. and Weimer, P.J. 1997. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrateexcess and substrate-limited conditions.Appl. Environ. Microbiol.63, 743–748.

    CAS PubMed PubMed Central  Google Scholar 

  • Sijpesteijn, A.K. 1949. Cellulose-decomposing bacteria from the rumen of the cattle.Antonie van Leeuwenhoek15, 49–52.

    Article  Google Scholar 

  • Suen, G., Stevenson, D.M., Bruce, D.C., Chertkov, O., Copeland, A., Cheng, J.F., Detter, C., Detter, J.C., Goodwin, L.A., Han, C.S.,et al. 2011. Complete genome of the cellulolytic ruminal bacteriumRuminococcus albus 7.J. Bacteriol.193, 5574–5575.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Tailford, L.E., Owen, C.D., Walshaw, J., Crost, E.H., Hardy-Goddard, J., Le Gall, G., De Vos, W.M., Taylor, G.L., and Juge, N. 2015. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation.Nat. Commun.6, 7624.

    Article PubMed PubMed Central  Google Scholar 

  • Takahashi, K., Nishida, A., Fujimoto, T., Fujii, M., Shioya, M., Imaeda, H., Inatomi, M., Bamba, S., Andoh, A., and Sugimoto, M. 2016. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease.Digestion93, 59–65.

    Article CAS PubMed  Google Scholar 

  • Thurston, B., Dawson, K.A., and Strobel, H.J. 1994. Pentose utilization by the ruminal bacteriumRuminococcus albus.Appl. Environ. Microbiol.60, 1087–1092.

    CAS PubMed PubMed Central  Google Scholar 

  • Titécat, M., Wallet, F., Vieillard, M.H., Courcol, R.J., and Loïez, C. 2014.Ruminococcus gnavus: An unusual pathogen in septic arthritis.Anaerobe30, 159–160.

    Article PubMed  Google Scholar 

  • Venturelli, O.S., Egbert, R.G., and Arkin, A.P. 2016. Towards engineering biological systems in a broader context.J. Mol. Biol.428, 928–944.

    Article CAS PubMed  Google Scholar 

  • Vereecke, L. and Elewaut, D. 2017. Spondyloarthropathies: Ruminococcus on the horizon in arthritic disease.Nat. Rev. Rheumatol.13, 574–576.

    Article PubMed  Google Scholar 

  • Walker, A.W., Duncan, S.H., Harmsen, H.J.M., Holtrop, G., Welling, G.W., and Flint, H.J. 2008. The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities.Environ. Microbiol.10, 3275–3283.

    Article CAS PubMed  Google Scholar 

  • Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., Brown, D., Stares, M.D., Scott, P., Bergerat, A.,et al. 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota.ISME J.5, 220–230.

    Article CAS PubMed  Google Scholar 

  • Wang, L., Christophersen, C.T., Sorich, M.J., Gerber, J.P., Angley, M.T., and Conlon, M.A. 2013. Increased abundance of Sutterella spp.and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism4, 1.

    Google Scholar 

  • Wegmann, U., Louis, P., Goesmann, A., Henrissat, B., Duncan, S.H., and Flint, H.J. 2013. Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans.Environ. Microbiol.16, 2879–2890.

    Article PubMed  Google Scholar 

  • Weimer, P.J. 1992. Cellulose degradation by ruminal microorganisms.Crit. Rev. Biotechnol.12, 189–223.

    Article CAS  Google Scholar 

  • Weimer, P.J., Price, N.P.J., Kroukamp, O., Joubert, L.M., Wolfaardt, G.M., and Van Zyl, W.H. 2006. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacteriumRuminococcus albus 7.Appl. Environ. Microbiol.72, 7559–7566.

    Article CAS PubMed PubMed Central  Google Scholar 

  • White, D. 2007. The physiology and biochemistry of prokaryotes, 3rd ed. Oxford University Press, New York, N.Y., USA.

    Google Scholar 

  • Xu, Q., Morrison, M., Nelson, K.E., Bayer, E.A., Atamna, N., and Lamed, R. 2004. A novel family of carbohydrate-binding modules identified withRuminococcus albus proteins.FEBS Lett.566, 11–16.

    Article CAS PubMed  Google Scholar 

  • Ze, X., David, B., Laverde-gomez, J.A., Dassa, B., Sheridan, P.O., Duncan, S.H., Louis, P., Henrissat, B., Juge, N., Koropatkin, N.M.,et al. 2015. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic firmicutes bacteriumRuminococcus bromii.MBio6, 1–11.

    Article  Google Scholar 

  • Ze, X., Duncan, S.H., Louis, P., and Flint, H.J. 2012.Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon.ISME J.6, 1535–1543.

    Article CAS PubMed PubMed Central  Google Scholar 

  • Zheng, M.M., Wang, R.F., Li, C.X., and Xu, J.H. 2015. Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase fromRuminococcus torques.Process Biochem.50, 598–604.

    Article CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA

    Alex J. La Reau & Garret Suen

Authors
  1. Alex J. La Reau
  2. Garret Suen

Corresponding author

Correspondence toGarret Suen.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Reau, A.J., Suen, G. The Ruminococci: key symbionts of the gut ecosystem.J Microbiol.56, 199–208 (2018). https://doi.org/10.1007/s12275-018-8024-4

Download citation

Keywords

Profiles

  1. Garret SuenView author profile

Access this article

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp