Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Interview with Paul W. Kruse on the Early History of HgCdTe, Conducted on October 22, 1980

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents an interview with Dr Paul W. Kruse (1927–2012) on the early history of the semiconductor alloy mercury cadmium telluride (HgCdTe or Hg1−xCdxTe) at the Honeywell Corporate Research Center near Minneapolis, Minnesota. Conducted on October 22, 1980, the interview covers two main areas. One area is the story of how the HgCdTe research effort came about at the Honeywell Research Center in the early 1960s, what technical choices were made and when, and what technical challenges were overcome and how. The other area is the organization, culture, environment and personnel at the Honeywell Research Center that made the early HgCdTe research programs so successful. HgCdTe has emerged as the highest-performance, most widely applicable infrared detector material. HgCdTe continues to satisfy a broad variety of advanced military and space applications. It is illustrative to look back on the early history of this remarkable semiconductor alloy to help to understand why its technological development as an infrared detector has been so successful.

Article PDF

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Proc. SPIE 7298, 72982M (2009).

  2. T. Elliott,Proc. SPIE 7298, 72982M (2009).

    Article  Google Scholar 

  3. M.B. Reine,Proc. SPIE 7298, 7298-2S (2009).

    Article  Google Scholar 

  4. J. Schmit, P. Kruse, and E. Stelzer,Proc. SPIE 7298, 7298-2R (2009).

    Article  Google Scholar 

  5. E. Putley, Chapter 7 inCold War, Hot Science: Applied Research in Britain’s Defence Laboratories 1945–1990, 1st ed., ed. R. Bud and P. Gummett (London: Harwood Academic Publishers, 1999), pp. 185–218.

    Google Scholar 

  6. W.D. Lawson, S. Nielsen, E.H. Putley, and A.S. Young,J. Phys. Chem. Solids 9, 325 (1959).

    Article  Google Scholar 

  7. W.D. Lawson, S. Nielsen, and A.S. Young, UK patent 859,588 (Application Date 3 September 1957; Published 25 January 1961).

  8. W.D. Lawson, S. Nielsen, and A.S. Young, U.S. patent 2,953,690 (Filed 3 September 1958; Patented 20 September 1960).

  9. P.W. Kruse, L.D. McGlauchlin, and R.B. McQuistan,Elements of Infrared Technology: Generation, Transmission and Detection (New York: Wiley, 1962).

    Google Scholar 

  10. U.S. Air Force Contract AF33(616)-7901, Performed at Honeywell Research Center, Hopkins, Minnesota; P.W. Kruse, Principal Investigator; T.D. Pickenpaugh, Air Force Technical Monitor.

  11. P.W. Kruse, M.D. Blue, J.H. Garfunkel, and W.D. Saur,Infrared Phys. 2, 53 (1962).

    Article  Google Scholar 

  12. M.D. Blue and P.W. Kruse,Proceedings of the Black Hills Summer Conference on Transport Phenomena, 21–23 August 1962, South Dakota School of Mines, Rapid City, South Dakota, pp. 205–218 (1962). DTIC Document AD0289290,http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0289290&Location=U2&doc=GetTRDoc.pdf.

  13. M.B. Reine, P.R. Norton, and E.L. Stelzer,Proc. SPIE 8704, 87041F (2013).

    Article  Google Scholar 

  14. M. Reine,J. Electron. Mater. 42, 3001 (2013).

    Article  Google Scholar 

  15. S.R. Borrello and H. Levinstein,J. Appl. Phys. 33, 2947 (1962).

    Article  Google Scholar 

  16. D. Long,Infrared Phys. 7, 169 (1967).

    Article  Google Scholar 

  17. D. Long,Infrared Phys. 7, 121 (1967).

    Article  Google Scholar 

  18. C. Hilsum and I.M. Ross,Nature 179, 146 (1957).

    Article  Google Scholar 

  19. P.W. Kruse,J. Appl. Phys. 30, 770 (1959).

    Article  Google Scholar 

  20. T.J. Davies,J. Appl. Phys. 28, 1217 (1957).

    Article  Google Scholar 

  21. J.S. Blakemore, D. Long, K.C. Nomura, and A. Nussbaum,Progress in Semiconductors, Vol. 6, ed. A.F. Gibson (London: Heywood & Company Ltd, 1962), pp. 39–84.

    Google Scholar 

  22. J.S. Blakemore,Semiconductor Statistics (Oxford: Pergamon Press, 1962).

    Google Scholar 

  23. R.L. Petritz,Photoconductivity Conference, ed. R.G. Breckenridge, B.R. Russell, and E.E. Hahn (New York: Wiley, 1956), p. 49.

    Google Scholar 

  24. E.S. Rittner,Photoconductivity Conference, ed. R.G. Breckenridge, B.R. Russell, and E.E. Hahn (New York: Wiley, 1956), p. 215.

    Google Scholar 

  25. R.L. Petritz,Proc. IRE 47, 1458 (1959).

    Article  Google Scholar 

  26. M.D. Blue and P.W. Kruse,J. Phys. Chem. Solids 23, 577 (1962).

    Article  Google Scholar 

  27. M.D. Blue, J.H. Garfunkel, and P.W. Kruse,J. Opt. Soc. Am. 51, 1408 (1961).

    Article  Google Scholar 

  28. D.R. Morey and S. Sheldon, U.S. patent 3,239,675 (8 March 1966).

  29. J. Blair and R. Newnham,Metallurgy of Elemental and Compound Semiconductors, Vol. 12 (New York: Wiley Interscience, 1963), p. 393.

    Google Scholar 

  30. P.W. Kruse,Appl. Opt. 4, 687 (1965).

    Article  Google Scholar 

  31. D. Long and J.L. Schmit, Chapter 5 in`Semiconductors and Semimetals, Vol. 5, ed. R.K. Willardson and A.C. Beer (New York: Academic Press, 1970),

    Google Scholar 

  32. P.W. Kruse, D. Long, and O.N. Tufte,Proceedings of the Third International Conference on Photoconductivity, Stanford University, 12–15 August 1969, ed. E.M. Pell (New York: Pergamon Press, 1971), pp. 223–229.

  33. J.L. Schmit and E.L. Stelzer,J. Appl. Phys. 40, 4865 (1969).

    Article  Google Scholar 

  34. W. Saur,Infrared Phys. 8, 255 (1968).

    Article  Google Scholar 

  35. D. Long, Chapter 4 inTopics in Applied Physics: Optical and Infrared Detectors, ed. R.J. Keyes (Berlin: Springer, 1980), pp. 101–147.

    Chapter  Google Scholar 

  36. D. Long,Phys. Rev. 176, 923 (1968).

    Article  Google Scholar 

  37. D. Long,Energy Bands in Semiconductors (New York: Wiley, 1968).

    Google Scholar 

  38. M.W. Scott,J. Appl. Phys. 40, 4077 (1969).

    Article  Google Scholar 

  39. O.N. Tufte and E.L. Stelzer,J. Appl. Phys. 40, 4559 (1969).

    Article  Google Scholar 

  40. The “H.W. Sweatt Engineer-Scientist Award” was presented annually to recognize outstanding technical accomplishments throughout the Honeywell company. It was named after Harold W. Sweatt, a longtime president of Honeywell.

Download references

Author information

Authors and Affiliations

  1. Photon Detector Physics, LLC, Cambridge, MA, 02138, USA

    Marion B. Reine

Authors
  1. Marion B. Reine

Corresponding author

Correspondence toMarion B. Reine.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reine, M.B. Interview with Paul W. Kruse on the Early History of HgCdTe, Conducted on October 22, 1980.J. Electron. Mater.44, 2955–2968 (2015). https://doi.org/10.1007/s11664-015-3737-1

Download citation

Keywords

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp